Skip to main content

Ergodic Theory : Fractal Geometry

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 435 Accesses

Definition of the Subject

The connection between fractal geometry and dynamical system theory is very diverse. There is no unified approach and many of the ideas arose fromsignificant examples. Also the dynamical system theory has been shown to have a strong impact on classical fractal geometry. In this article thereare first presented some examples showing nontrivial results coming from the application of dimension theory. Some of these examples require a deeperknowledge of the theory of smooth dynamical systems then can be provided here. Nevertheless, the flavor of these examples can be understood. Then thereis a brief overview of some of the most developed parts of the application of fractal geometry to dynamical system theory. Of course a rigorousand complete treatment of the theory cannot be given. The cautious reader may wish to check the original papers. Finally, there is an outlook over themost recent developments. This article is by no means meant to be complete. It is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Dynamical system:

A (discrete time) dynamical system describes the time evolution of a point in phase space. More precisely a space X is given and the time evolution is given by a map \( { T\colon X\to X } \). The main interest is to describe the asymptotic behavior of the trajectories (orbits) \( { T^n(x) } \), i. e. the evolution of an initial point \( { x\in X } \) under the iterates of the map T. More generally one is interested in obtaining information on the geometrically complicated invariant sets or measures which describe the asymptotic behavior.

Fractal geometry:

Many objects of interest (invariant sets, invariant measures etc.) exhibit a complicated structure that is far from being smooth or regular. The aim of fractal geometry is to study those objects. One of the main tools is the fractal dimension theory that helps to extract important properties of geometrically “irregular” sets.

Bibliography

Primary Literature

  1. Afraimovich VS, Schmeling J, Ugalde J, Urias J (2000) Spectra of dimension for Poincaré recurrences. Discret Cont Dyn Syst 6(4):901–914

    MathSciNet  MATH  Google Scholar 

  2. Afraimovich VS, Chernov NI, Sataev EA (1995) Statistical Properties of 2D Generalized Hyperbolic Attractors. Chaos 5:238–252

    MathSciNet  ADS  MATH  Google Scholar 

  3. Aihua F, Yunping J, Jun W (2005) Asymptotic Hausdorff dimensions of Cantor sets associated with an asymptotically non‐hyperbolic family. Ergod Theory Dynam Syst 25(6):1799–1808

    MATH  Google Scholar 

  4. Alexander J, Yorke J (1984) Fat Baker's transformations. Erg Th Dyn Syst 4:1–23

    MathSciNet  MATH  Google Scholar 

  5. Ambroladze A, Schmeling J (2004) Lyapunov exponents are not stable with respect to arithmetic subsequences. In: Fractal geometry and stochastics III. Progr Probab 57. Birkhäuser, Basel, pp 109–116

    Google Scholar 

  6. Artin E (1965) Ein mechanisches System mit quasi‐ergodischen Bahnen, Collected papers. Addison Wesley, pp 499–501

    Google Scholar 

  7. Barreira L () Variational properties of multifractal spectra. IST preprint

    Google Scholar 

  8. Barreira L (1995) Cantor sets with complicated geometry and modeled by general symbolic dynamics. Random Comp Dyn 3:213–239

    MathSciNet  MATH  Google Scholar 

  9. Barreira L (1996) A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Erg Th Dyn Syst 16:871–927

    MathSciNet  MATH  Google Scholar 

  10. Barreira L (1996) A non-additive thermodynamic formalism and dimension theory of hyperbolic dynamical systems. Math Res Lett 3:499–509

    MathSciNet  MATH  Google Scholar 

  11. Barreira L, Saussol B (2001) Hausdorff dimension of measure via Poincaré recurrence. Comm Math Phys 219(2):443–463

    MathSciNet  ADS  MATH  Google Scholar 

  12. Barreira L, Saussol B (2001) Multifractal analysis of hyperbolic flows. Comm Math Phys 219(2):443–463

    MathSciNet  ADS  MATH  Google Scholar 

  13. Barreira L, Saussol B (2001) Variational principles and mixed multifractal spectra. Trans Amer Math Soc 353(10):3919–3944 (electronic)

    MathSciNet  MATH  Google Scholar 

  14. Barreira L, Schmeling J (2000) Sets of “Non‐typical” Points Have Full Topological Entropy and Full Hausdorff Dimension. Isr J Math 116:29–70

    MathSciNet  MATH  Google Scholar 

  15. Barreira L, Pesin Y, Schmeling J (1997) Multifractal spectra and multifractal rigidity for horseshoes. J Dyn Contr Syst 3:33–49

    MathSciNet  MATH  Google Scholar 

  16. Barreira L, Pesin Y, Schmeling J (1997) On a General Concept of Multifractal Rigidity: Multifractal Spectra For Dimensions, Entropies, and Lyapunov Exponents. Multifractal Rigidity. Chaos 7:27–38

    MathSciNet  ADS  MATH  Google Scholar 

  17. Barreira L, Pesin Y, Schmeling J (1999) Dimension and Product Structure of Hyperbolic Measures. Annals Math 149:755–783

    MathSciNet  MATH  Google Scholar 

  18. Barreira L, Saussol B, Schmeling J (2002) Distribution of frequencies of digits via multifractal analysis. J Number Theory 97(2):410–438

    MathSciNet  MATH  Google Scholar 

  19. Barreira L, Saussol B, Schmeling J (2002) Higher–dimensional multifractal analysis. J Math Pures Appl (9) 81(1):67–91

    MathSciNet  Google Scholar 

  20. Belykh VP (1982) Models of discrete systems of phase synchronization. In: Shakhildyan VV, Belynshina LN (eds) Systems of Phase Synchronization. Radio i Svyaz, Moscow, pp 61–176

    Google Scholar 

  21. Billingsley P (1978) Ergodic Theory and Information. Krieger

    Google Scholar 

  22. Blinchevskaya M, Ilyashenko Y (1999) Estimate for the Entropy Dimension Of The Maximal Attractor For \( { k- } \)Constracting Systems In An Infinite‐Dimensional Space. Russ J Math Phys 6(1):20–26

    MathSciNet  MATH  Google Scholar 

  23. Boshernitzan M (1993) Quantitative recurrence results. Invent Math 113:617–631

    MathSciNet  ADS  MATH  Google Scholar 

  24. Bothe H-G (1995) The Hausdorff dimension of certain solenoids. Erg Th Dyn Syst 15:449–474

    MathSciNet  MATH  Google Scholar 

  25. Bousch T (2000) Le poisson n'a pas d'arêtes. Ann IH Poincaré (Prob-Stat) 36(4):489–508

    MathSciNet  ADS  MATH  Google Scholar 

  26. Bowen R (1973) Topological entropy for noncompact sets. Trans Amer Math Soc 184:125–136

    MathSciNet  Google Scholar 

  27. Bowen R (1979) Hausdorff Dimension Of Quasi‐circles. Publ Math IHES 50:11–25

    MathSciNet  ADS  MATH  Google Scholar 

  28. Bylov D, Vinograd R, Grobman D, Nemyckii V (1966) Theory of Lyapunov exponents and its application to problems of stability. Izdat “Nauka”, Moscow (in Russian)

    Google Scholar 

  29. Casdagli M, Sauer T, Yorke J (1991) Embedology. J Stat Phys 65:589–616

    MathSciNet  Google Scholar 

  30. Ciliberto S, Eckmann JP, Kamphorst S, Ruelle D (1971) Liapunov Exponents from Times. Phys Rev A 34

    Google Scholar 

  31. Collet P, Lebowitz JL, Porzio A (1987) The Dimension Spectrum of Some Dynamical Systems. J Stat Phys 47:609–644

    MathSciNet  ADS  MATH  Google Scholar 

  32. Constantin P, Foias C (1988) Navier‐Stokes Equations. Chicago U Press

    Google Scholar 

  33. Cruchfield J, Farmer D, Packard N, Shaw R (1980) Geometry from a Time Series. Phys Rev Lett 45:712–724

    ADS  Google Scholar 

  34. Cutler C (1990) Connecting Ergodicity and Dimension in Dynamical Systems. Ergod Th Dynam Syst 10:451–462

    MathSciNet  MATH  Google Scholar 

  35. Denjoy A (1932) Sur les courbes défines par les équations différentielles á la surface du tore. J Math Pures Appl 2:333–375

    Google Scholar 

  36. Ding M, Grebogi C, Ott E, Yorke J (1993) Estimating correlation dimension from a chaotic times series: when does the plateau onset occur? Phys D 69:404–424

    MathSciNet  MATH  Google Scholar 

  37. Dodson M, Rynne B, Vickers J (1990) Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37:59–73

    MathSciNet  MATH  Google Scholar 

  38. Douady A, Oesterle J (1980) Dimension de Hausdorff Des Attracteurs. CRAS 290:1135–1138

    MathSciNet  MATH  Google Scholar 

  39. Eggleston HG (1952) Sets of Fractional Dimension Which Occur in Some Problems of Number Theory. Proc Lond Math Soc 54:42–93

    MathSciNet  Google Scholar 

  40. Ellis R (1984) Large Deviations for a General Class of Random Vectors. Ann Prob 12:1–12

    MATH  Google Scholar 

  41. Ellis R (1985) Entropy, Large Deviations, and Statistical Mechanics. Springer

    Google Scholar 

  42. Falconer K (1990) Fractal Geometry, Mathematical Foundations and Applications. Cambridge U Press, Cambridge

    MATH  Google Scholar 

  43. Fan AH, Feng DJ, Wu J (2001) Recurrence, dimension and entropy. J Lond Math Soc 64(2):229–244

    MathSciNet  MATH  Google Scholar 

  44. Frederickson P, Kaplan J, Yorke E, Yorke J (1983) The Liapunov Dimension Of Strange Attractors. J Differ Equ 49:185–207

    MathSciNet  MATH  Google Scholar 

  45. Frostman O (1935) Potential d'équilibre Et Capacité des Ensembles Avec Quelques Applications à la Théorie des Fonctions. Meddel Lunds Univ Math Sem 3:1–118

    Google Scholar 

  46. Furstenberg H (1967) Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation. Math Syst Theory 1:1–49

    MathSciNet  MATH  Google Scholar 

  47. Furstenberg H (1970) Intersections of Cantor Sets and Transversality of Semigroups I. In: Problems in Analysis. Sympos Salomon Bochner, Princeton Univ. Princeton Univ Press, pp 41–59

    Google Scholar 

  48. Gatzouras D, Peres Y (1996) The variational principle for Hausdorff dimension: A survey, in Ergodic theory of \( { \mathbb{Z}^d } \) actions. In: Pollicott M et al (ed) Proc of the Warwick symposium. Cambridge University Press. Lond Math Soc Lect Note Ser 228:113–125

    MathSciNet  Google Scholar 

  49. Grassberger P, Procaccia I, Hentschel H (1983) On the Characterization of Chaotic Motions, Lect Notes. Physics 179:212–221

    Google Scholar 

  50. Halsey T, Jensen M, Kadanoff L, Procaccia I, Shraiman B (1986) Fractal Measures and Their Singularities: The Characterization of Strange Sets. Phys Rev A 33(N2):1141–1151

    MathSciNet  ADS  MATH  Google Scholar 

  51. Hasselblatt B (1994) Regularity of the Anosov splitting and of horospheric foliations. Ergod Theory Dynam Syst 14(4):645–666

    MathSciNet  MATH  Google Scholar 

  52. Hasselblatt B, Schmeling J (2004) Dimension product structure of hyperbolic sets. In: Modern dynamical systems and applications. Cambridge Univ Press, Cambridge, pp 331–345

    Google Scholar 

  53. Henley D (1992) Continued Fraction Cantor Sets, Hausdorff Dimension, and Functional Analysis. J Number Theory 40:336–358

    MathSciNet  Google Scholar 

  54. Hentschel HGE, Procaccia I (1983) The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Physica8D:435–444

    MathSciNet  ADS  Google Scholar 

  55. Herman MR (1979) Sur la conjugaison différentiable des difféomorphismes du cercle á des rotations. Publications de l'Institute de Mathématiques des Hautes Études Scientifiques 49:5–234

    Google Scholar 

  56. Hunt B (1996) Maximal Local Lyapunov Dimension Bounds The Box Dimension Of Chaotic Attractors. Nonlinearity 9:845–852

    MathSciNet  ADS  MATH  Google Scholar 

  57. Iommi G (2005) Multifractal analysis for countable Markov shifts. Ergod Theory Dynam Syst 25(6):1881–1907

    MathSciNet  MATH  Google Scholar 

  58. Jarnik V (1931) Über die simultanen diophantischen Approximationen. Math Zeitschr 33:505–543

    MathSciNet  Google Scholar 

  59. Jenkinson O (2001) Rotation, entropy, and equilibrium states. Trans Amer Math Soc 353:3713–3739

    MathSciNet  MATH  Google Scholar 

  60. Kalinin B, Sadovskaya V (2002) On pointwise dimension of non‐hyperbolic measures. Ergod Theory Dynam Syst 22(6):1783–1801

    MathSciNet  MATH  Google Scholar 

  61. Kaplan JL, Yorke JA (1979) Functional differential equations and approximation of fixed points. Lecture Notes. In: Mathematics vol 730. Springer, Berlin, pp 204–227

    Google Scholar 

  62. Katznelson Y, Weiss B (1982) A simple proof of some ergodic theorems. Isr J of Math 42:291–296

    MathSciNet  MATH  Google Scholar 

  63. Kenyon R, Peres Y (1996) Measure of full dimension on affine invariant sets. Erg Th Dyn Syst 16:307–323

    MathSciNet  MATH  Google Scholar 

  64. Kesseböhmer M (1999) Multifrakale und Asymptotiken grosser Deviationen. Thesis U Göttingen, Göttingen

    Google Scholar 

  65. Kingman JFC (1968) The ergodic theory of subadditive stochastic processes. J Royal Stat Soc B30:499–510

    MathSciNet  MATH  Google Scholar 

  66. Kleinbock D, Margulis G (1998) Flows on Homogeneous Spaces and Diophantine Approximation on Manifold. Ann Math 148:339–360

    MathSciNet  MATH  Google Scholar 

  67. Kra B, Schmeling J (2002) Diophantine classes, dimension and Denjoy maps. Acta Arith 105(4):323–340

    MathSciNet  ADS  MATH  Google Scholar 

  68. Ledrappier F (1981) Some Relations Between Dimension And Lyapounov Exponents. Comm Math Phys 81:229–238

    MathSciNet  ADS  MATH  Google Scholar 

  69. Ledrappier F (1986) Dimension of invariant measures. Proceedings of the conference on ergodic theory and related topics II (Georgenthal, 1986). Teubner–texte Math 94:137–173

    Google Scholar 

  70. Ledrappier F, Misiurewicz M (1985) Dimension of Invariant Measures for Maps with Exponent Zero. Ergod Th Dynam Syst 5:595–610

    MathSciNet  MATH  Google Scholar 

  71. Ledrappier F, Strelcyn JM (1982) A proof of the estimate from below in Pesin's entropy formula. Ergod Theory Dynam Syst 2:203–219

    MathSciNet  MATH  Google Scholar 

  72. Ledrappier F, Young LS (1985) The Metric Entropy Of Diffeomorphisms. I Characterization Of Measures Satisfying Pesin's Entropy Formula. Ann Math 122:509–539

    MathSciNet  MATH  Google Scholar 

  73. Ledrappier F, Young LS (1985) The Metric Entropy Of Diffeomorphisms, II. Relations Between Entropy, Exponents and Dimension. Ann Math 122:540–574

    MathSciNet  Google Scholar 

  74. Lopes A (1989) The Dimension Spectrum of the Maximal Measure. SIAM J Math Analysis 20:1243–1254

    MathSciNet  MATH  Google Scholar 

  75. Mauldin RD, Urbański M (1996) Dimensions and measures in infinite iterated function systems. Proc Lond Math Soc 73(1):105–154

    Google Scholar 

  76. Mauldin RD, Urbański M (2002) Fractal measures for parabolic IFS. Adv Math 168(2):225–253

    Google Scholar 

  77. Mauldin DR, Urbański M (2003) Graph directed Markov systems. Geometry and dynamics of limit sets Cambridge Tracts in Mathematics, 148. Cambridge University Press, Cambridge

    Google Scholar 

  78. Mauldin RD; Urbański M (2000) Parabolic iterated function systems. Ergod Theory Dynam Syst 20(5):1423–1447

    Google Scholar 

  79. McCluskey H, Manning A (1983) Hausdorff Dimension For Horseshoes. Erg Th Dyn Syst 3:251–260

    MathSciNet  Google Scholar 

  80. Moran P (1946) Additive Functions Of Intervals and Hausdorff Dimension. Proceedings Of Cambridge Philosophical Society 42:15–23

    Google Scholar 

  81. Moreira C, Yoccoz J (2001) Stable Intersections of Cantor Sets with Large Hausdorff Dimension. Ann of Math (2) 154(1):45–96

    MathSciNet  Google Scholar 

  82. Mãné R (1981) On the Dimension of Compact Invariant Sets for Certain Nonlinear Maps. Lecture Notes in Mathematics, vol 898. Springer

    Google Scholar 

  83. Mãné R (1990) The Hausdorff Dimension of Horseshoes of Surfaces. Bol Soc Bras Math 20:1–24

    Google Scholar 

  84. Neunhäuserer J (1999) An analysis of dimensional theoretical properties of some affine dynamical systems. Thesis. Free University Berlin, Berlin

    Google Scholar 

  85. Oseledets V (1968) A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 19:197–221

    MATH  Google Scholar 

  86. Ott E, Sauer T, Yorke J (1994) Part I Background. In: Coping with chaos. Wiley Ser Nonlinear Sci, Wiley, New York, pp 1–62

    Google Scholar 

  87. Palis J, Takens F (1987) Hyperbolicity And The Creation Of Homoclinic Orbits. Ann Math 125:337–374

    MathSciNet  MATH  Google Scholar 

  88. Palis J, Takens F (1993) Hyperbolicity And Sensitive Chaotic Dynamics At Homoclinic Bifurcations. Cambridge U Press, Cambridge

    MATH  Google Scholar 

  89. Palis J, Takens F (1994) Homoclinic Tangencies For Hyperbolic Sets Of Large Hausdorff Dimension. Acta Math 172:91–136

    MathSciNet  MATH  Google Scholar 

  90. Palis J, Viana M (1988) On the continuity of Hausdorff dimension and limit capacity for horseshoes. Lecture Notes in Math, vol 1331. Springer

    Google Scholar 

  91. Pesin Y (1977) Characteristic exponents and smooth ergodic theory. Russian Math Surveys 32(4):55–114

    MathSciNet  ADS  Google Scholar 

  92. Pesin Y (1992) Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Erg Th Dyn Syst 12:123–151

    MathSciNet  MATH  Google Scholar 

  93. Pesin Y (1993) On Rigorous Mathematical Definition of Correlation Dimension and Generalized Spectrum for Dimensions. J Statist Phys 71(3–4):529–547

    MathSciNet  ADS  MATH  Google Scholar 

  94. Pesin Y (1997) Dimension Theory In Dynamical Systems: Rigorous Results And Applications. Cambridge U Press, Cambridge

    Google Scholar 

  95. Pesin Y (1997) Dimension theory in dynamical systems: contemporary views and applications. In: Chicago Lectures in Mathematics. Chicago University Press, Chicago

    Google Scholar 

  96. Pesin Y, Pitskel' B (1984) Topological pressure and the variational principle for noncompact sets. Funct Anal Appl 18:307–318

    MathSciNet  MATH  Google Scholar 

  97. Pesin Y, Sadovskaya V (2001) Multifractal analysis of conformal axiom A flows. Comm Math Phys 216(2):277–312

    MathSciNet  ADS  MATH  Google Scholar 

  98. Pesin Y, Tempelman A (1995) Correlation Dimension of Measures Invariant Under Group Actions. Random Comput Dyn 3(3):137–156

    MathSciNet  MATH  Google Scholar 

  99. Pesin Y, Weiss H (1994) On the Dimension of Deterministic and Random Cantor‐like Sets. Math Res Lett 1:519–529

    MathSciNet  MATH  Google Scholar 

  100. Pesin Y, Weiss H (1996) On The Dimension Of Deterministic and Random Cantor‐like Sets, Symbolic Dynamics, And TheEckmann‐Ruelle Conjecture. Comm Math Phys182:105–153

    MathSciNet  ADS  MATH  Google Scholar 

  101. Pesin Y, Weiss H (1997) A Multifractal Analysis of Equilibrium Measures For Conformal Expanding Maps and Moran-like Geometric Constructions. J Stat Phys 86:233–275

    MathSciNet  ADS  MATH  Google Scholar 

  102. Pesin Y, Weiss H (1997) The Multifractal Analysis of Gibbs Measures: Motivation. Mathematical Foundation and Examples. Chaos 7:89–106

    MathSciNet  ADS  MATH  Google Scholar 

  103. Petersen K (1983) Ergodic theory. Cambridge studies in advanced mathematics 2. Cambridge Univ Press, Cambridge

    Google Scholar 

  104. Pollicott M, Weiss H (1994) The Dimensions Of Some Self Affine Limit Sets In The Plane And Hyperbolic Sets. J Stat Phys 77:841–866

    MathSciNet  ADS  MATH  Google Scholar 

  105. Pollicott M, Weiss H (1999) Multifractal Analysis for the Continued Fraction and Manneville‐Pomeau Transformations and Applications to Diophantine Approximation. Comm Math Phys 207(1):145–171

    MathSciNet  ADS  MATH  Google Scholar 

  106. Przytycki F, Urbański M (1989) On Hausdorff Dimension of Some Fractal Sets. Studia Math 93:155–167

    Google Scholar 

  107. Ruelle D (1978) Thermodynamic Formalism. Addison‐Wesley

    Google Scholar 

  108. Ruelle D (1982) Repellers For Real Analytic Maps. Erg Th Dyn Syst 2:99–107

    MathSciNet  MATH  Google Scholar 

  109. Schmeling J (1994) Hölder Continuity of the Holonomy Maps for Hyperbolic basic Sets II. Math Nachr 170:211–225

    MathSciNet  MATH  Google Scholar 

  110. Schmeling J (1997) Symbolic Dynamics for Beta‐shifts and Self‐Normal Numbers. Erg Th Dyn Syst 17:675–694

    MathSciNet  MATH  Google Scholar 

  111. Schmeling J (1998) A dimension formula for endomorphisms – the Belykh family. Erg Th Dyn Syst 18:1283–1309

    MathSciNet  MATH  Google Scholar 

  112. Schmeling J (1999) On the Completeness of Multifractal Spectra. Erg Th Dyn Syst 19:1–22

    MathSciNet  Google Scholar 

  113. Schmeling J (2001) Entropy Preservation under Markov Codings. J Stat Phys 104(3–4):799–815

    MathSciNet  MATH  Google Scholar 

  114. Schmeling J, Troubetzkoy S (1998) Dimension and invertibility of hyperbolic endomorphisms with singularities. Erg Th Dyn Syst 18:1257–1282

    MathSciNet  MATH  Google Scholar 

  115. Schmeling J, Weiss H (2001) Dimension theory and dynamics. AMS Proceedings of Symposia in Pure Mathematics series 69:429–488

    Google Scholar 

  116. Series C (1985) The Modular Surface and Continued Fractions. J Lond Math Soc 31:69–80

    MathSciNet  MATH  Google Scholar 

  117. Simon K (1997) The Hausdorff dimension of the general Smale–Williams solenoidwith different contraction coefficients. Proc Am Math Soc 125:1221–1228

    ADS  MATH  Google Scholar 

  118. Simpelaere D (1994) Dimension Spectrum of Axiom-A Diffeomorphisms, II. Gibbs Measures. J Stat Phys 76:1359–1375

    MathSciNet  ADS  MATH  Google Scholar 

  119. Solomyak B (1995) On the random series \( { \sum\pm\lambda\sp n } \) (an Erdös problem). Ann of Math (2) 142(3):611–625

    MathSciNet  Google Scholar 

  120. Solomyak B (2004) Notes on Bernoulli convolutions. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Proc Sympos Pure Math, 72, Part 1. Amer Math Soc, Providence, pp 207–230

    Google Scholar 

  121. Stratmann B (1995) Fractal Dimensions for Jarnik Limit Sets of Geometrically Finite Kleinian Groups; The Semi‐Classical Approach. Ark Mat 33:385–403

    MathSciNet  MATH  Google Scholar 

  122. Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics, vol 898. Springer

    Google Scholar 

  123. Takens F, Verbitzki E (1999) Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm Math Phys 203:593–612

    MathSciNet  ADS  MATH  Google Scholar 

  124. Walters P (1982) Introduction to Ergodic Theory. Springer

    Google Scholar 

  125. Weiss H (1992) Some Variational Formulas for Hausdorff Dimension, Topological Entropy, and SRB Entropy for Hyperbolic Dynamical System. J Stat Phys 69:879–886

    ADS  MATH  Google Scholar 

  126. Weiss H (1999) The Lyapunov Spectrum Of Equilibrium Measures for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms. J Statist Phys 95(3–4):615–632

    MathSciNet  ADS  MATH  Google Scholar 

  127. Young LS (1981) Capacity of Attractors. Erg Th Dyn Syst 1:381–388

    MATH  Google Scholar 

  128. Young LS (1982) Dimension, Entropy, and Lyapunov Exponents. Erg Th Dyn Syt 2:109–124

    MATH  Google Scholar 

Books and Reviews

  1. Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol 470. Springer

    Google Scholar 

  2. Eckmann JP, Ruelle D (1985) Ergodic Theory Of Chaos And Strange Attractors. Rev Mod Phys 57:617–656

    MathSciNet  ADS  Google Scholar 

  3. Federer H (1969) Geometric measure theory. Springer

    Google Scholar 

  4. Hasselblatt B, Katok A (2002) Handbook of Dynamical Systems, vol 1, Survey 1. Principal Structures. Elsevier

    Google Scholar 

  5. Katok A (1980) Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Études Sci Publ Math 51:137–173

    MathSciNet  MATH  Google Scholar 

  6. Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  7. Keller G (1998) Equilibrium states in ergodic theory. In: London Mathematical Society Student Texts 42. Cambridge University Press, Cambridge

    Google Scholar 

  8. Mañé R (1987) Ergodic theory and differentiable dynamics. In: Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Band 8. Springer

    Google Scholar 

  9. Mario R, Urbański M (2005) Regularity properties of Hausdorff dimension in infinite conformal iterated function systems. Ergod Theory Dynam Syst 25(6):1961–1983

    Google Scholar 

  10. Mattila P (1995) Geometry of sets and measures in Euclidean spaces. In: Fractals and rectifiability. Cambridge University Press, Cambridge

    Google Scholar 

  11. Pugh C, Shub M (1989) Ergodic attractors. Trans Amer Math Soc 312(1):1–54

    MathSciNet  MATH  Google Scholar 

  12. Takens F (1988) Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. Lecture Notes in Math, vol 1331. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Schmeling, J. (2009). Ergodic Theory : Fractal Geometry . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_179

Download citation

Publish with us

Policies and ethics