Skip to main content

Exobiology and Complexity

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Recent research, guided by theoretical searches for unificationas much as by compilation of huge new databases, suggests that complexsystems throughout Nature are localized, temporary islands of orderedstructures within vastly larger, disordered environments beyond thosesystems. All such complex systems – including, for example,stars, life, and society – can be shown to obeyquantitatively the principles of non‐equilibrium thermodynamics,and all can be modeled in a common, integral manner by analyzingthe energy passing through those systems. The concept of energy flow does seem to be as universal a process as anything yet found inNature for the origin, maintenance, and evolution of ordered, complexsystems. The optimization of such energy flows acts as an agent ofevolution broadly considered, thereby affecting, and to some extentunifying, all of physical, biological, and cultural evolution.

More specifically, non‐equilibrium thermodynamics,especially the energy...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Complexity:

A state of intricacy, complication, variety,or involvement, as in the interconnected parts ofa system – a quality of having many interacting,different components.

Cosmic evolution:

A grand synthesis of the many varied changesin the assembly and composition of radiation, matter, and lifethroughout the history of the Universe.

Cosmology:

Thestudy of the structure, evolution, and destiny of theUniverse.

Energy:

Theability to do work or to cause change.

Energy rate density:

The amount of energy flowing through a systemper unit time per unit mass.

Evolution:

Anyprocess of growth and change with time, including an accumulation ofhistorical information; in its broadest sense, both developmental andgenerational change.

Exobiology:

Thestudy of the origin, evolution, and distribution of past and presentlife in the Universe; also known as astrobiology orbioastronomy.

Thermodynamics:

The study of the macroscopic changes in the energyof a system, for which temperature is a centralproperty.

Bibliography

  1. AungerR (2007) Major transitions in ‘big’ history. Tech ForecastSoc Chang 68:27

    Google Scholar 

  2. BennettCL et al (2003) Wilkinson Microwave Anisotropy Probe (WMAP) basicresults. Astrophys. J Suppl Ser148:1

    ADS  Google Scholar 

  3. BlumHF (1968) Time's arrow and evolution. Princeton University Press,Princeton

    Google Scholar 

  4. BonnerJT (1988) Evolution of complexity. Princeton University Press,Princeton

    Google Scholar 

  5. BrooksDR, Wiley EO (1988) Evolution as entropy. University of Chicago Press, Chicago

    Google Scholar 

  6. BrownH (1976) Energy in our future. Ann Rev Energy1:1

    ADS  Google Scholar 

  7. ChaissonEJ (1981) Cosmic dawn: origins of matter and life. Atlantic MonthlyPress, Boston

    Google Scholar 

  8. ChaissonEJ (1987) The life era (appendix). Atlantic Monthly Press, NewYork

    Google Scholar 

  9. ChaissonEJ (1998) The cosmic environment for the growth ofcomplexity. BioSystems 46:13

    Google Scholar 

  10. ChaissonEJ (2001) Cosmic evolution: the rise of complexity in nature. HarvardUniversity Press, Cambridge

    Google Scholar 

  11. ChaissonEJ (2003) A unifying concept for astrobiology. IntJ Astrobio 2:91

    Google Scholar 

  12. ChaissonEJ (2004) Complexity; an energetics agenda. Complex J Santa Fe Inst9:14

    Google Scholar 

  13. ChaissonEJ (2005) Non‐equilibrium thermodynamics in an energy‐richuniverse. In: Kleidon A, Lorenz RD (eds) Non‐equilibriumThermodynamics and the Production of Entropy. Springer,Berlin

    Google Scholar 

  14. ChaissonEJ (2006) Epic of evolution: seven ages of the cosmos. ColumbiaUniversity Press, New York

    Google Scholar 

  15. ChaissonEJ (2009) Cosmic evolution: state of the science. In: Dick S (ed)Cosmos and Culture. NASA, Washington

    Google Scholar 

  16. ChambersR (1844) Vestiges of the natural history of creation. Churchill,London

    Google Scholar 

  17. ChristianD (2004) Maps of time: introduction to bighistory. University California Press, Berkeley

    Google Scholar 

  18. CookE (1971) The flow of energy in an industrial society. Sci Am224:135

    Google Scholar 

  19. DarwinC (1859) On the origin of species. J Murray,London

    Google Scholar 

  20. DiamondJ (2005) Collapse: how societies choose to fail or succeed. Viking,New York

    Google Scholar 

  21. DykeC (1988) Cities as dissipative structures. In: Weber BH et al (eds)Entropy, Information, and Evolution. MIT Press,Cambridge

    Google Scholar 

  22. DysonF (1979) Time without end: physics and biology in an openuniverse. Rev Mod Phys 51:447

    ADS  Google Scholar 

  23. ElmegreenB, Lada C (1977) Sequential star formation of subgroups in OBassociations. Astrophys J 214:725

    ADS  Google Scholar 

  24. FoxRF (1988) Energy and the evolution of life. Freeman, SanFrancisco

    Google Scholar 

  25. FrautschiS (1982) Entropy in an expanding universe. Science217:593

    ADS  Google Scholar 

  26. GoldT (1962) The arrow of time. Am J Phys30:403

    ADS  MATH  Google Scholar 

  27. HakenH (1978) Synergetics. Springer, Berlin

    MATH  Google Scholar 

  28. HakenH (1975) Cooperative phenomena in systems far from thermalequiblibrium and in nonphysical systems. Rev Mod Phys47:67

    MathSciNet  ADS  Google Scholar 

  29. HalacyDS (1977) Earth, water, wind and sun. Harper & Row, NewYork

    Google Scholar 

  30. HammondKA, Diamond J (1997) Maximal sustained energy budgets in humans andanimals. Nature 386:457

    ADS  Google Scholar 

  31. HendersonL (1913) Fitness of the environment. Macmillan, NewYork

    Google Scholar 

  32. HofkirchnerW (ed) (1999) The quest for a unified theory ofinformation. Gordon & Breach,Amsterdam

    MATH  Google Scholar 

  33. JantschE (1980) Self‐organizing universe. Pergamon,Oxford

    Google Scholar 

  34. JaynesET (1957) Information theory and statistical mechanics. Phys Rev108:171

    MathSciNet  ADS  Google Scholar 

  35. JervisR (1997) System effects: complexity in political and sociallife. Princeton University Press, Princeton

    Google Scholar 

  36. KauffmanS (1993) The origins of order. Oxford University,Press

    Google Scholar 

  37. KleiberM (1961) The fire of life. Wiley, NewYork

    Google Scholar 

  38. KleidonA, Lorenz RD (eds) (2005) Non‐equilibrium thermodynamics and theproduction of entropy. Springer, Berlin

    Google Scholar 

  39. LamarckJ-B (1809) Philosophie Zoologique. Editions du Seuil, Paris

    Google Scholar 

  40. LayzerD (1976) The arrow of time. Astrophys J206:559

    MathSciNet  ADS  Google Scholar 

  41. LayzerD (1988) Growth of order in the universe. In: Weber BH et al (eds)Entropy, Information, and Evolution. MIT Press,Cambridge

    Google Scholar 

  42. LewinR (1992) Complexity. Macmillan, New York

    Google Scholar 

  43. LineweaverC (2005) Cosmological and biological reproducibility: limits onmaximum entropy production principle. In: Kleidon A, Lorenz RD (eds)Non‐equilibrium Thermodynamics and the Production ofEntropy. Springer, Berlin

    Google Scholar 

  44. LotkaA (1922) Contribution to the energetics of evolution. Proc Nat AcadSci USA 8:147

    ADS  Google Scholar 

  45. MargulisL, Sagan D (1986) Microcosmos. Simon & Schuster, NewYork

    Google Scholar 

  46. MarijuanPC et al (eds) (1996) First conference on foundations of informationsciences. Biosystems 38:87

    Google Scholar 

  47. MatsunoK (1989) Protobiology: Physical Basis of Biology. CRC Press,Florida

    Google Scholar 

  48. MayrE (1997) This is biology. Harvard University Press,Cambridge

    Google Scholar 

  49. McMahonT, Bonner JT (1983) On size and life. Freeman, SanFrancisco

    Google Scholar 

  50. McNeillJR, McNeill WH (2003) The human web. Norton, NewYork

    Google Scholar 

  51. MorowitzHJ (1968) Energy flow in biology. Academic Press, NewYork

    Google Scholar 

  52. MorrisonP (1964) A thermodynamic characterization ofself‐reproduction. Rev Mod Phys36:517

    ADS  Google Scholar 

  53. OdumHT (1971) Environment, power, and society. Wiley, NewYork

    Google Scholar 

  54. PrigogineI (1961) Introduction to thermodynamics of irreversibleprocesses. Wiley, New York

    MATH  Google Scholar 

  55. PrigogineI, Nicolis G, Babloyantz A (1972) Thermodynamics of evolution. PhysicsToday 11:23

    Google Scholar 

  56. ReevesH (1981) Patience dans l'azur: l'evolution cosmique. Editions duSeuil, Paris

    Google Scholar 

  57. SaganC (1980) Cosmos. Random House, New York

    Google Scholar 

  58. SalkJ (1982) An evolutionary approach to world problems. UNESCO,Paris

    Google Scholar 

  59. SchneiderED, Kay JJ (1995) Order from disorder: thermodynamics of complexity inbiology. In: Murphy M, O'Neill L (eds) What is life. CambridgeUniversity Press, Cambridge

    Google Scholar 

  60. SchroedingerE (1944) What is life? Cambridge University Press,Cambridge

    Google Scholar 

  61. ShannonCE, Weaver W (1949) Mathematical theory of communication. University ofIllinois Press, Champaign‐Urbana

    MATH  Google Scholar 

  62. ShapleyH (1930) Flights from chaos. McGraw Hill, NewYork

    Google Scholar 

  63. SmilV (1999) Energies. MIT Press, Cambridge

    Google Scholar 

  64. SpencerH (1896) A system of synthetic philosophy. Williams and Norgate,London

    Google Scholar 

  65. SpierF (2005) How big history works. Soc Evol Hist4:25

    Google Scholar 

  66. SzathmaryE, Maynard Smith J (1995) The major evolutionary transitions. Nature374:227

    ADS  Google Scholar 

  67. TainterJA (1988) The collapse of complex societies. Cambridge University Press,Cambridge

    Google Scholar 

  68. UlanowiczRE (1986) Growth and development. Springer,Berlin

    MATH  Google Scholar 

  69. WeberBH, Depew DJ, Smith JD (eds) (1988) Entropy, information, andevolution. MIT Press, Cambridge

    Google Scholar 

  70. WestGB, Brown JH, Enquist BJ (1999) Fourth dimension of life. Science284:1677

    MathSciNet  ADS  MATH  Google Scholar 

  71. WhiteLA (1959) The evolution of culture. McGraw‐Hill, NewYork

    Google Scholar 

  72. WhiteheadAN (1925) Science and the modern world. Macmillan, NewYork

    Google Scholar 

  73. WickenJS (1987) Evolution, thermodynamics, and information. OxfordUniversity Press, Oxford

    Google Scholar 

  74. vonBertalanffy L (1932) Theoretische biologie. Borntraeger,Berlin

    Google Scholar 

  75. vonBertalanffy L (1968) General system theory. Braziller, NewYork

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Chaisson, E.J. (2009). Exobiology and Complexity. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_194

Download citation

Publish with us

Policies and ethics