Skip to main content

Fluid Dynamics, Turbulence

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Fluid flows are open systems far from equilibrium. Fluid motion is sustained by energy injected at a certain scale, the so‐calledintegral scale and is dissipated by viscosity mainly in small-scale structures. If the integral scale and the dissipative scale are widely separated andthe motions on the integral scale are sufficiently strong, the fluid develops a range of spatio‐temporal structures. In three‐dimensionalflows these structures steadily decay into smaller structures and are generated by the instability of larger structures. This leads to a cascadingprocess which transports energy across scales. Turbulence appears if the fluid motion is driven far away from equilibrium. It develops through sequencesof instabilities and processes of selforganization. From this respect, turbulence is a highly ordered phenomenon, whose spatio‐temporalcomplexity, however, has still to be explored.

Introduction

Turbulence is one...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Basic equation of fluid dynamics:

Fluid motion is mathematically treated on the basis of a continuum theory. The fundamental evolution equations are the Euler equation for ideal fluids and the Navier–Stokes equation for Newtonian fluids.

Vortex motions:

Numerical calculations of turbulent flow fields show that the flows are dominated by coherent structures in form of vortex sheets or tube-like vortices. The question, why vorticity tends to be condensed in localized objects, is one of the central issues of fluid dynamics. Regarding two‐dimensional flows there are attempts to approximate fluid motion by a collection of point vortices. This allows one to investigate properties of flows on the basis of a finite dimensional (Hamiltonian) dynamical system.

Turbulence modeling and large eddy simulations:

The evolution equation for the average velocity field of turbulent flows contains the Reynolds stresses, whose origin are the turbulent pulsations. Turbulence modeling consists of relating the Reynolds stresses to averaged quantities of the fluid motion. This allows one to perform numerical computations of large-scale flows without resolving the turbulent fine structure.

Phenomenological theories of the fine structure of turbulence:

Phenomenological theories play an important role in physics, and are quite often formulated before a microscopic understanding of the physical problem has been achieved. Phenomenological theories have been developed for the fine structure of turbulence. Of great importance is the theory of Kolmogorov , which he formulated in the year 1941 and refined in 1962. The so‐called K41 and K62 theories focus on the self‐similar behavior of statistical properties of velocity increments, i. e. the velocity difference between two points with a spatial distance r. Recently, phenomenological theories have been developed that consider the joint probabilities of velocity increments at different scales. It is expected that multiple scale analysis of turbulence will provide new insights into the spatio‐temporal complexity of turbulence.

Turbulent cascades:

Fluid motions are dissipative systems. Stationary flows can only be maintained by a constant energy input in the form of shear flows or body forces. Usually, the length and time scales related to the energy input are widely separated from the ones on which energy is dissipated. A consequence is the establishment of an energy transport across scales. It is believed that this energy transport is local in scale leading to the so‐called energy cascades. These cascades are related to the emergence of scaling behavior. There is a direct energy cascade in three dimensions from large to small scales and an inverse cascade of energy from small scales to large scales in two‐dimensional flows.

Analytical theories of turbulence:

Analytical theories of turbulence try to assess the experimental results on turbulent flows directly from a statistical treatment of the basic fluid dynamical equations. Analytical theories rely on renormalized perturbation expansions and use methods from quantum field theory and renormalization group methods. However, no generally accepted theory has emerged so far.

Bibliography

  1. Anselmet F, Gagne Y, Hopfinger EJ, Antonia RA (1984) High order structurefunctions in turbulent shear flows. J Fluid Mech 140:63

    ADS  Google Scholar 

  2. Antonia RA, Ould-Rouis M, Zhu Y, Anselmet F (1997) Fourth‐order moments oflongitudinal- and transverse‐velocity structure functions. Europhys Lett 37:85

    ADS  Google Scholar 

  3. Aref H (1983) Integrable, chaotic, and turbulent vortex motion intwo‐dimensional flows. Ann Rev Fluid Mech 15:345

    MathSciNet  ADS  Google Scholar 

  4. Aref H (2007) Vortices and polynomials. Fluid Dyn Res39:5

    MathSciNet  ADS  MATH  Google Scholar 

  5. Arnold VI, Khesin BA (1999) Topological methods in hydrodynamics. Springer,Berlin

    Google Scholar 

  6. Aronson D, Löfdahl LL (1993) The plane wake of a cylinder. Measurements andinferences on the turbulence modelling. Phys Fluids A 5:1433

    Google Scholar 

  7. Benzi R, Ciliberto S, Baudet C, Chavarria GR, Tripiccione R (1993) Extendedself‐similarity in the dissipation range of fully‐developed turbulence. Europhys Lett 24:275

    ADS  Google Scholar 

  8. Castaing B, Gagne Y, Hopfinger EJ (1990) Velocity probability density functionsof high Reynolds number turbulence. Phys D 46:177

    MATH  Google Scholar 

  9. Data provided by Chabaud B, Chanal O, CNRS Gernoble,France

    Google Scholar 

  10. Chevillard L, Roux SG, Leveque E, Mordant N, Pinton J-F, Arneodo A (2006) PhysD 218:77

    MATH  Google Scholar 

  11. Chorin AJ, Marsden GE (2000) A mathematical introduction to fluidmechanics. Springer, Berlin

    Google Scholar 

  12. Cuypers Y, Maurel A, Petitjeans P (2003) Vortex burst as a source ofturbulence. Phys Rev Lett 91:194502

    ADS  Google Scholar 

  13. Darrigol O (2005) Worlds of Flow. Oxford University Press, Oxford

    MATH  Google Scholar 

  14. Davidson PA (2004) Turbulence. Oxford University Press, Oxford

    MATH  Google Scholar 

  15. Davoudi J, Tabar MRR (1999) Theoretical Model for Kramers‐Moyal'sdescription of Turbulence Cascade. Phys Rev Lett 82:1680

    ADS  Google Scholar 

  16. Doering CR, Gibbon JD (1995) Applied Analysis of the Navier‐StokesEquations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Eule S, Friedrich R (2005) A note on a random driven Burgersequation. Phys Lett A 351:238

    MathSciNet  ADS  Google Scholar 

  18. Eyink GL, Sreenivasan KR (2006) Onsager and the theory of hydrodynamicturbulence. Rev Mod Phys 78:87

    MathSciNet  ADS  MATH  Google Scholar 

  19. Falkovich G, Gawedzki K, Vergassola M (2001) Particles and fields in fluidturbulence. Rev Mod Phys 73:797

    MathSciNet  Google Scholar 

  20. Foias C, Rosa R, Manley O, Temam R (2001) Navier–Stokes Equation andTurbulence. Cambridge University Press, Cambridge

    Google Scholar 

  21. Friedrich R (2003) Statistics of Lagrangian velocities in turbulentflows. Phys Rev Lett 90:084501

    ADS  Google Scholar 

  22. Friedrich R, Peinke J (1997) Description of a turbulent cascade bya Fokker–Planck equation. Phys Rev Lett 78:863

    ADS  Google Scholar 

  23. Friedrich R, Peinke J (1997) Statistical properties of a turbulentcascade. Phys D 102:147

    MATH  Google Scholar 

  24. Friedrich R, Zeller J, Peinke J (1998) A Note in Three Point Statisticsof Velocity Increments in Turbulence. Europhys Lett 41:153

    ADS  Google Scholar 

  25. Friedrich R, Peinke J, Tabar MRR (2008) Importance of Fluctuations: Complexityin the View of Stochastic Processes within this issue. Springer, Berlin

    Google Scholar 

  26. Frisch U (1995)Turbulence. The legacy of Kolmogorov. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Fursikov AV (1999) The closure problem of the Friedmann–Keller infinitechain of moment equations, corresponding to the Navier–Stokes system. In: Gyr A, Kinzelbach W, Tsinober A (eds) Fundamental problematic issues inturbulence. Birkhäuser, Basel

    Google Scholar 

  28. Galanti B, Gibbon JD, Heritage M (1997) Vorticity alignment results for thethree‐dimensional Euler and Navier–Stokes equations. Nonlinearity 10:1675

    MathSciNet  ADS  MATH  Google Scholar 

  29. Gilbert AD (1993) A cascade interpretation of Lundgrens stretched spiralvortex model for turbulent fine structure. Phys Fluids A5:2831

    ADS  Google Scholar 

  30. Grafke T, Homann H, Dreher J, Grauer R (2008) Numerical simulations of possiblefinite time singularities in the incompressible Euler equations: comparison of numerical methods. Phys D 237:1932

    MathSciNet  MATH  Google Scholar 

  31. Grassi V, Leo R a, Soliani G, Tempesta P (2000) Vortices and invariantsurfaces generated by symmetries for the 3D Navier–Stokes equations. Physica A 286:79

    MathSciNet  ADS  MATH  Google Scholar 

  32. Grauer R, Marliani C, Germaschewski K (1998) Adaptive mesh refinement forsingular solutions of the incompressible Euler equations. Phys Rev Lett 84:4850

    ADS  Google Scholar 

  33. Gyr A, Kinzelbach W, Tsinober A (1999) Fundamental problematic issues inturbulence. Birkhäuser, Basel

    MATH  Google Scholar 

  34. Haken H (1983) Synergetics, An Introduction. Springer,Berlin

    MATH  Google Scholar 

  35. Haken H (1987) Advanced Synergetics. Springer,Berlin

    Google Scholar 

  36. Hamlington PE, Schumacher J, Dahm WJA (2008) Local and nonlocal strain ratefields and vorticity alignment in turbulent flows. Phys Rev E 77:026303

    MathSciNet  ADS  Google Scholar 

  37. Hatakeyama N, Kambe T (1997) Statistical laws of random strained vortices inturbulence. Phys Rev Lett 79:1257

    ADS  Google Scholar 

  38. Hopf E (1957) Statistical hydromechanics and functional calculus. J Rat MechAnal 1:87

    MathSciNet  Google Scholar 

  39. Jimenez J, Wray AA, Saffman PG, Rogallo RS (1993) The structure of intensevorticity in isotropic turbulence. J Fluid Mech 255:65

    MathSciNet  ADS  MATH  Google Scholar 

  40. Jovanovic J (2004) The statistical dynamics of turbulence. Springer,Berlin

    MATH  Google Scholar 

  41. Kirchhoff G (1883) Vorlesungen über mathematische Physik, vol 1, 3rdedn. Teubner, Leipzig

    Google Scholar 

  42. Kolmogorov AN (1941) Dissipation of energy in locally isotropicturbulence. Dokl Akad Nauk SSSR 32:19

    ADS  Google Scholar 

  43. Kolmogorov AN (1941) The local structure of turbulence in incompressibleviscous fluid for very large Reynold's numbers. Dokl Akad Nauk SSSR 30:301

    ADS  Google Scholar 

  44. Kolmogorov AN (1962) A refinement of previous hypotheses concerning thelocal structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82

    MathSciNet  ADS  MATH  Google Scholar 

  45. L'vov V, Procaccia I Hydrodynamic Turbulence: a 19th Century Problem with a Challenge for the 21st Centurs. arXiv:chao-dyn 96006015

    Google Scholar 

  46. La Porta A, Voth G, Crawford AM, Alexander J, Bodenschatz E (2000) Fluidparticle acceleration in fully developped turbulence. Nature 409:1017; La Porta A, Voth G, Moisy F, Bodenschatz E (2001) Using cavitation to measurestatistics of low‐pressure events in large Reynolds‐number turbulence. Phys Fluids 12:1485

    ADS  MATH  Google Scholar 

  47. Landau L, Lifshitz EM (1981) Lehrbuch der Theoretischen Physik, Bd. 6,Hydrodynamik. Akademie, Berlin

    Google Scholar 

  48. Langner M, Peinke J, Rauh A () Langevin analysis with application toa Rayleigh–Benard convection experiment. Int J Nonlinear Dyn Syst Chaos (in press)

    Google Scholar 

  49. Lesieur M (1997) Turbulence in fluids. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  50. Lesieur M, Yaglom A, David F (2000) New trends in turbulence, LesHouchesSummer School. Springer, Berlin

    Google Scholar 

  51. Lück S, Renner C, Peinke J, Friedrich R (2006) The Markov–Einsteincoherence length – a new meaning for the Taylor length in turbulence. Phys Lett A 359:335

    Google Scholar 

  52. Lundgren TS (1969) Distribution functions in the statistical theory ofturbulence. Phys Fluids 10:969

    ADS  Google Scholar 

  53. Lundgren TS (1982) Strained spiral vortex model for turbulent finestructure. Phys Fluids 25:2193

    ADS  MATH  Google Scholar 

  54. Lundgren TS (1993) A small-scale turbulence model. Phys Fluids A5:1472

    MathSciNet  ADS  Google Scholar 

  55. Manneville P (2004) Instabilities, chaos and turbulence. Imperial College Press, London

    Google Scholar 

  56. Marchioro C, Pulvirenti M (1984) Vortex methods in two‐dimensional fluiddynamics. Lecture Notes in Physics. Springer, Berlin

    Google Scholar 

  57. Marcq P, Naert AA (2001) Langevin equation for turbulent velocityincrements. Phys Fluids 13:2590

    ADS  Google Scholar 

  58. Martin PC, Siggia ED, Rose HA (1973) Statistical dynamics of classicalsystems. Phys Rev A8:423

    ADS  Google Scholar 

  59. McComb WD (1990) The physics of fluid turbulence. Clarendon Press, Oxford

    Google Scholar 

  60. Moffat HK, Kida S, Ohkitani K (1994) Stretched vortices—the sinews ofturbulence. J Fluid Mech 259:231

    ADS  Google Scholar 

  61. Monin AS, Yaglom AM (1971) Statistical Fluid Mechanics: Mechanics ofTurbulence, vol 1. MIT Press, Cambridge, MA

    Google Scholar 

  62. Monin AS, Yaglom AM (1975) Statistical Fluid Mechanics: Mechanics ofTurbulence, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  63. Mordant N, Metz P, Michel O, Pinton J-F (2001) Measurement of Lagrangianvelocity in fully developed turbulence. Phys Rev Lett 87:214501

    ADS  Google Scholar 

  64. Newton PK (2001) The N‑Vortex problem. Springer, NewYork

    MATH  Google Scholar 

  65. Oberlack M (2000) Symmetrie, Invarianz und Selbstähnlichkeit in derTurbulenz. Shaker, Aachen

    Google Scholar 

  66. Oberlack M, Busse FH (2002) Theories of turbulence. Springer,Wien

    Google Scholar 

  67. Obukhov AM (1959) Description of turbulence in terms of Lagrangianvariables. Adv Geophys 6:113

    ADS  Google Scholar 

  68. Onsager L (1949) Statistical hydrodynamics. Suppl Nuovo Cimento6:279

    MathSciNet  Google Scholar 

  69. Ott S, Mann J (2000) An experimentalinvestigation of the relative diffusion of particle pairs in three‐dimensional turbulent flow. J Fluid Mech 402:207

    ADS  Google Scholar 

  70. Ottino JM (1989) The Kinematics of Mixing: Stretching, Chaos, andTransport. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  71. Piquet J (1999) Turbulent flows, models and physics. Springer,Berlin

    MATH  Google Scholar 

  72. Pope SB (1985) Lagrangian PDF methods for turbulent flows. Annu Rev Fluid Mech26:23; Pope SB (1994) Pdf methods for turbulent reactive flows. Prog Energy Combust Sci 11:119

    MathSciNet  ADS  Google Scholar 

  73. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  74. Renner C, Peinke J, Friedrich R (2001) Experimental indications for Markovproperties of small scale turbulence. J Fluid Mech 433:383

    ADS  MATH  Google Scholar 

  75. Renner C, Peinke J, Friedrich R, Chanal O, Chabaud B (2002) Universality ofsmall scale turbulence. Phys Rev Lett 89:124502

    ADS  Google Scholar 

  76. Reynolds O (1883) Philos Trans R Soc Lond 174:935

    MATH  Google Scholar 

  77. Richardson LF (1926) Atmospheric diffusion shown ona distance‐neighbour graph. Proc R Soc Lond A 110:709

    ADS  Google Scholar 

  78. Siefert M, Peinke J (2004) Different cascade speeds for longitudinal andtransverse velocity increments of small-scale turbulence. Phys Rev E 70:015302R

    ADS  Google Scholar 

  79. Siefert M, Peinke J (2006) Joint multi-scale statistics of longitudinal andtransversal increments in small-scale wake turbulence. J Turbul 7:1

    MathSciNet  Google Scholar 

  80. Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scaleturbulence. Annu Rev Fluid Mech 29:435–472

    MathSciNet  ADS  Google Scholar 

  81. Sturman R, Ottino JM, Wiggins S (2006) The mathematical foundations ofmixing. In: Cambridge Monographs of Applied and Computational Mathematics, No 22

    Google Scholar 

  82. Taylor GI (1921) Diffusion by continuous movement. Proc Lond Math Soc Ser20(2):196

    MATH  Google Scholar 

  83. Temam R (2007) Infinite dimensional dynamical systems in mechanics andphysics. Springer, Heidelberg

    Google Scholar 

  84. Townsend AA (1951) On the fine structure of turbulence. Proc R Soc Lond A208:534

    ADS  MATH  Google Scholar 

  85. Tutkun M, Mydlarski L (2004) Markovian properties of passive scalar incrementsin grid‐generated turbulence. New J Phys 6:49

    Google Scholar 

  86. Ulinich FR, Ya Lyubimov B (1969) Statistical theory of turbulence of anincompressible fluid at large Reynolds numbers. Zh Exper Teor Fiz 55:951

    Google Scholar 

  87. Wilczek M, Jenko F, Friedrich R Lagrangian particle statistics in turbulentflows from a simple vortex model. Phys Rev E (to appear)

    Google Scholar 

  88. Calculation performed by Wilczek M (Münster)

    Google Scholar 

  89. Wyld HW (1961) Formulation of the theory of turbulence in incompressiblefluids. Ann Phys 14:143

    MathSciNet  ADS  MATH  Google Scholar 

  90. http://www.claymath.org/millenium/

    Google Scholar 

Download references

Acknowledgments

We thank all members of our working groups for fruitful collaboration. We thank T. Christen and M. Wilczekfor crictically reading the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Friedrich, R., Peinke, J. (2009). Fluid Dynamics, Turbulence. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_215

Download citation

Publish with us

Policies and ethics