Skip to main content

Definition of the Subject

Foraging robots are mobile robots capable of searching for and, when found, transporting objects to one or more collection points. Foraging robotsmay be single robots operating individually, or multiple robots operating collectively. Single foraging robots may be remotely tele‐operated orsemi‐autonomous; multiple foraging robots are more likely to be fully autonomous systems. In robotics foraging is important for several reasons:firstly, it is a metaphor for a broad class of problems integrating exploration, navigation and object identification, manipulation andtransport; secondly, in multi‐robot systems foraging is a canonical problem for the study of robot‐robot cooperation, and thirdly, manyactual or potential real‐world applications for robotics are instances of foraging robots, for instance cleaning , harvesting , search and rescue ,land‐mine clearance or planetary exploration...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Autonomy:

In robotics autonomy conventionally refers to the degree to which a robot is able to make its own decisions about which actions to take next. Thus a fully autonomous robot would be capable of carrying out its entire mission or function without human control or intervention. A semi‐autonomous robot would have a degree of autonomy but require some human supervision.

Behavior‐based control :

Behavior‐based control describes a class of robot control systems characterized by a set of conceptually independent task achieving modules, or behaviors. All task achieving modules are able to access the robot's sensors and when a particular module becomes active it is able to temporarily take control of the robot's actuators [2].

Braitenberg vehicle :

In robotics a Braitenberg vehicle is a conceptual mobile robot in which simple sensors are connected directly to drive wheels. Thus if, for instance, a front‐left‐side sensor is connected to the right‐side drive wheel and vice‐versa, then if the sensors are light sensitive the robot will automatically steer towards a light source [11].

Finite state machine:

In the context of this article a finite state machine (FSM) is a model of robot behavior which has a fixed number of states. Each state represents a particular set of actions or behaviors. The robot can be in only one of these states at any given instant in time and transitions between states may be triggered by either external or internal events.

Odometry :

Odometry refers to the technique of self‐localization in which a robot measures how far it has traveled by, for instance, counting the revolutions of its wheels. Odometry suffers the problem that wheel‐slip leads to cumulative errors so odometric position estimates are generally inaccurate and of limited value unless combined with other localization techniques.

Robot:

In this article the terms robot and mobile robot are used interchangeably. A mobile robot is a man‐made device or vehicle capable of (1) sensing its environment and (2) purposefully moving through and acting upon or within that environment. A robot may be fully autonomous, semi‐autonomous or tele‐operated.

Swarm intelligence :

The term swarm intelligence describes the purposeful collective behaviors observed in nature, most dramatically in social insects . Swarm intelligence is the study of those collective behaviors, in both natural and artificial systems of multiple agents, and how they emerge from the local interactions of the agents with each other and with their environment [8,19].

Tele‐operation :

A robot is said to be tele‐operated if it is remotely controlled by a human operator.

Bibliography

Primary Literature

  1. Arai T, Pagello E, Parker L (2002) Guest editorial: Advances in multirobotsystems. IEEE Trans Robotics Autom 18:655–661

    Google Scholar 

  2. Arkin RC (1998) Behaviour‐Based Robotics. MIT Press, Cambridge

    Google Scholar 

  3. Balch T (2002) Taxonomies of multirobot task and reward. In: Balch T, Parker LE(eds) Robot Teams. A K Peters, Wellesley, pp 23–35

    Google Scholar 

  4. Balch T, Arkin RC (1994) Communication in reactive multiagent robotic systems.Auton Robots 1:1–25

    Google Scholar 

  5. Balch T, Boone G, Collins T, Forbes H, MacKenzie D, Santamaria J (1995) Io,Ganymede and Callisto: A multiagent robot trash‐collecting team. AI Magazine 16(2):39–53

    Google Scholar 

  6. Beckers R, Holland OE, Deneubourg JL (1994) From local actions to global tasks:Stigmergy and collective robotics. In: Artificial Life IV. MIT Press, Cambridge, pp 181–189

    Google Scholar 

  7. Beni G (2005) From swarm intelligence to swarm robotics. In: Şahin E, SpearsW (eds) Swarm Robotics Workshop: State-of‐the‐art Survey, number 3342. Springer, Berlin,pp 1–9

    Google Scholar 

  8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence – From Naturalto Artificial Systems. Oxford Univ Press, Oxford

    MATH  Google Scholar 

  9. Bonabeau E, Theraulaz C, Deneubourg JL (1996) Quantitative study of the fixedthreshold model for the regulation of division of labor in insect societies. In: Proceedings of the Royal Society of London, Series B Biological Sciences263:1565–1569

    Google Scholar 

  10. Bonabeau E, Theraulaz G, Deneubourg JL (1998) Fixed response thresholds andthe regulation of division of labour in insect societies. Bull Math Biol 60:753–807

    MATH  Google Scholar 

  11. Braitenberg V (1984) Vehicles – Experiments in Synthetic Psychology. MITPress, Cambridge

    Google Scholar 

  12. Brooks RA (1986) A robust layered control system for a mobilerobot. J Robotics Autom 2:14–23

    MathSciNet  Google Scholar 

  13. Bryson MT, Sukkarieh S (2007) Decentralised trajectory control formulti‐UAV SLAM. In: 4th International Symposium on Mechatronics and its Applications (ISMA '07), Sharjah, United Arab Emirates, March2007

    Google Scholar 

  14. Cao YU, Fukunaga AS, Kahng AB (1997) Cooperative mobile robotics: Antecedentsand directions. Auton Robots 4:1–23

    Google Scholar 

  15. Connell JH (1990) Minimalist Mobile Robotics: A colony‐stylearchitecture for an artificial creature. Academic Press, San Diego

    MATH  Google Scholar 

  16. Şahin E (2005) Swarm robotics: From sources of inspiration to domains ofapplication. In: Şahin E, Spears W (eds) Swarm Robotics Workshop: State‐of‐the‐art Survey, number 3342. Lecture Notes in ComputerScience. Springer, Berlin, pp 10–20

    Google Scholar 

  17. Deneubourg JL, Goss S, Pasteels JM, Fresneau D, Lachaud JP (1987)Self‐organization mechanisms in ant societies (ii): learning in foraging and division of labour. Experientia Suppl54:177–196

    Google Scholar 

  18. Dissanayake MWMG, Newman PM, Durrant‐Whyte HF, Clark S, Csorba M (2001)A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robotics Autom17(3):229–241

    Google Scholar 

  19. DorigoM, Birattari M (2007) Swarm intelligence. Scholarpedia 2(9):1462

    Google Scholar 

  20. Dorigo M, Tuci E, Groß T, Trianni V, Labella TH, Nouyan S, Ampatzis C (2005)The SWARM‐BOT project. In: Şahin E, Spears W (eds) Swarm Robotics Workshop: State‐of‐the‐art Survey, number 3342. LectureNotes in Computer Science. Springer, Berlin, pp 31–44

    Google Scholar 

  21. Dudek G, Jenkin M, Milios E, Wilkes D (1996) A taxonomy formulti‐agent robotics. Auton Robots 3:375–397

    Google Scholar 

  22. Everett HR (1995) Sensors for mobile robots: Theory and applications. AKPeters, Wellesley

    Google Scholar 

  23. Gazi V, Passino KM (2004) Stability analysis of social foraging swarms. IEEETrans Syst Man Cybernetics – Part B: Cybernetics 34(1):539–557

    Google Scholar 

  24. Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of taskallocation in multi‐robot systems. Int J Robot Res 23(9):939–954

    Google Scholar 

  25. Goldberg D, Matarić MJ (1997) Interference as a tool for designing andevaluating multi‐robot controllers. In: Proc 14th Nationalconference on Artificial Intelligence (AAAI‐97), Providence, July 1997. MIT Press, Cambridge, pp 637–642

    Google Scholar 

  26. Greenman J, Holland OE, Kelly I, Kendall K, McFarland D, Melhuish CR (2003)Towards robot autonomy in the natural world: A robot in predator's clothing. Mechatronics 13(3):195–228

    Google Scholar 

  27. Groß R, Tuci E, Dorigo M, Bonani M, Mondada F (2006) Object transport bymodular robots that self‐assemble. In: Proc IEEEInternational Conference on Robotics and Automation, Orlando, May 2006,pp 2558–2564

    Google Scholar 

  28. Hayes AT, Martinoli A, Goodman RMF (2002) Distributed odor sourcelocalization. IEEE Sensors, Special Issue on Artificial Olfaction 2(3):260–271

    Google Scholar 

  29. Hicks RW, Hall EL (2000) A survey of robot lawn mowers. In: Casasent DP(ed) Proc SPIE Intelligent Robots and Computer Vision XIX:Algorithms, Techniques, and Active Vision, vol 4197. SPIE, Bellingham, pp 262–269

    Google Scholar 

  30. Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press,Cambridge

    Google Scholar 

  31. Horn BKP (1986) Robot Vision. MIT Press, Cambridge

    Google Scholar 

  32. Ijspeert AJ, Martinoli A, Billard A, Gambardella LM (2001) Collaborationthrough the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Auton Robots11(2):149–171

    MATH  Google Scholar 

  33. Kelly I, Holland OE, Melhuish CR (2000) Slugbot: a robotic predator inthe natural world. In: 5th Symposium on Artificial Life and Robotics (AROB2000), Oita, January 2000

    Google Scholar 

  34. Kondo N, Monta M, Shibano Y, Mohri K (1993) Basic mechanism of robot adaptedto physical properties of tomato plant. In: Proc InternationalConference for Agricultural Machinery and Process Engineering, Seoul,October 1993, vol 3, pp 840–849. The Korean Societyfor Agricultural Machinery

    Google Scholar 

  35. Kondo N, Nakamura M, Monta M, Shibano Y, Mohri K, Arima S (1994) Visual sensorfor cucumber harvesting robot. In: Proceedings of the FoodProcessing Automation Conference, Orlando, February 1994, pp 461–470

    Google Scholar 

  36. Krieger M, Billeter JB (2000) The call of duty: Self‐organised taskallocation in a population of up to twelve mobile robots. J Robotics Auton Syst 30:65–84

    Google Scholar 

  37. Labella TH, Dorigo M, Deneubourg JL (2006) Division of labour in a groupof robots inspired by ants' foraging behaviour. ACM Trans Auton Adapt Syst 1(1):4–25

    Google Scholar 

  38. Lerman K (2002) Mathematical model of foraging in a group of robots:Effect of interference. Auton Robots 13(2):127–141

    MATH  Google Scholar 

  39. Lerman K, Galstyan A, Martinoli A, Ijspeert AJ (2002) A macroscopicanalytical model of collaboration in distributed robotic systems. Artif Life 7:375–393

    Google Scholar 

  40. Lerman K, Jones C, Galstyan A, Matarić MJ (2006) Analysis of dynamic taskallocation in multi-robot systems. Int J Robot Res 25(3):225–242

    Google Scholar 

  41. Lerman K, Martinoli A, Galstyan A (2005) A review of probabilisticmacroscopic models for swarm robotic systems. In: Şahin E, Spears W (eds) Swarm Robotics Workshop: State‐of‐the‐art Survey, number3342. Springer, Berlin, pp 143–152

    Google Scholar 

  42. Liu W, Winfield AFT, Sa J (2007) Modelling swarm robotic systems: A casestudy in collective foraging. In: Towards Autonomous Robotic Systems (TAROS 07), pp 25–32, Aberystwyth, September2007

    Google Scholar 

  43. Liu W, Winfield AFT, Sa J, Chen J, Dou L (2007) Towards energy optimisation:Emergent task allocation in a swarm of foraging robots. Adapt Behav 15(3):289–305

    Google Scholar 

  44. Martinoli A, Easton K, Agassounon W (2004) Modeling swarm robotic systems:A case study in collaborative distributed manipulation. Int J Robot Res, Special Issue on Experimental Robotics23(4):415–436

    Google Scholar 

  45. Martinoli A, Ijspeert AJ, Gambardella LM (1999) A probabilistic model forunderstanding and comparing collective aggregationmechanisms. In: Proc Euro Conf on Artificial Life ECAL'99, Lausanne,September 1999, pp 575–584

    Google Scholar 

  46. Matarić MJ (1992) Designing emergent behaviours: From local interactions tocollective intelligence. In: From Animals To Animats(SAB-92). MIT Press, Cambridge, pp 432–441

    Google Scholar 

  47. Matarić MJ, Marjanovic MJ (1993) Synthesizing complex behaviors by composingsimple primitives. In: Proc Self Organization and Life, From Simple Rules to Global Complexity, European Conference on Artificial Life (ECAL‐93),pp 698–707, Brussels, May (1993)

    Google Scholar 

  48. Melhuish C (1999) Employing secondary swarming with small scale robots:a biologically inspired collective approach. In: Proc ofthe 2nd Int Conf on Climbing & Walking Robots CLAWAR, Portsmouth,September 1999

    Google Scholar 

  49. Melhuish C, Ieropoulos I, Greenman J, Horsfield I (2006) Energeticallyautonomous robots: Food for thought. Auton Robots 21(3):187–198

    Google Scholar 

  50. Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg JL, Dorigo M (2005)The cooperation of Swarm‐bots: Physical interactions in collective robotics. IEEE Robotics Autom Mag 12(2):21–28

    Google Scholar 

  51. De Nardi R, Holland OE (2007) Ultraswarm: A further step towardsa flock of miniature helicopters. In: Second InternationalWorkshop on Swarm Robotics at SAB (2006), vol 4433. Springer,Heidelberg,pp 116–128

    Google Scholar 

  52. Nembrini J, Winfield AFT, Melhuish C (2002) Minimalist coherent swarming ofwireless networked autonomous mobile robots. In: From Animals to Animats SAB'02. MIT Press, Cambridge,pp 373–382

    Google Scholar 

  53. Oster GF, Wilson EO (1978) Caste and Ecology in the Social Insects. PrincetonUniversity Press, Priceton

    Google Scholar 

  54. Østergaard EH, Sukhatme GS, Matarić MJ (2001) Emergent bucket brigading:A simple mechanism for improving performance in multi‐robot constrained‐space foraging tasks. In: Proc Int Conf on Autonomous Agents,Montreal, May 2001

    Google Scholar 

  55. Parker LE (1994) ALLIANCE: an architecture for fault tolerant, cooperativecontrol of heterogeneous mobile robots. In: Proc IEEE/RSJInternational Conference on Intelligent Robots and Systems,Munich, September 1994, pp 776–783

    Google Scholar 

  56. Pearson MJ, Pipe AG, Melhuish CR, Mitchinson B, Prescott TJ (2007) Whiskerbot:A robotic active touch system modeled on the rat whisker sensory system. Adapt Behav 15:223–240

    Google Scholar 

  57. Pilarski T, Happold M, Pangels H, Ollis M, Fitzpatrick K, Stentz A (1999) TheDemeter system for automated harvesting. In: Proceedings of the 8th International Topical Meeting on Robotics and Remote Systems, Pittsberg, April 1999

    Google Scholar 

  58. Rooks B (2001) Robots reach the home floor. Ind Robot 28(1):27–28

    Google Scholar 

  59. Russell A (1993) Mobile robot guidance using a short‐lived heattrail. Robotica 11:427–431

    Google Scholar 

  60. Russell A (1995) Laying and sensing odor markings as a strategy forassisting mobile robot navigation tasks. IEEE Robotics Autom Mag 2(3):3–9

    Google Scholar 

  61. Schenker PS, Huntsberger TL, Pirjanian P, Baumgartner ET, Tunstel E (2003)Planetary rover developments supporting mars exploration, sample return and future human‐robotic colonization. Auton Robots14(2–3):103–126

    MATH  Google Scholar 

  62. SchillingT (ed) (2000) Telerobotic Applications. Professional Engineering Publishing, London

    Google Scholar 

  63. Siegwart RY, Nourbakhsh IR (2004) Introduction to Autonomous Mobile Robots(Intelligent Robotics and Autonomous Agents). Bradford Books, Cambridge

    Google Scholar 

  64. Spero DJ, Jarvis RA (2002) Path planning for a mobile robot ina rough terrain environment. In: Third InternationalWorkshop on Robot Motion and Control, pp 417–422, BukowyDworek, November 2001

    Google Scholar 

  65. Støy K (2001) Using situated communication in distributed autonomous mobilerobotics. In: 7th Scandinavian Conf on AI. Odense, February 2001, pp 44–52

    Google Scholar 

  66. VertutJ, Coiffet P (1986) Teleoperation and Robotics. Prentice Hall,Englewood Cliffs

    Google Scholar 

  67. Wettergreen D, Cabrol N, Baskaran V, Calderón F, Heys S, Jonak D, Lüders A,Pane D, Smith T, Teza J, Tompkins P, Villa D, Williams C, Wagner M (2005) Second experiments in the robotic investigation of life in the Atacama desert ofChile. In: Proc International Symposium on ArtificialIntelligence, Robotics and Automation in Space, Munich, September 2005

    Google Scholar 

  68. Winfield AFT, Harper CJ, Nembrini J (2005) Towards dependable swarms anda new discipline of swarm engineering. In: Şahin E, Spears W (eds) Swarm Robotics Workshop: State‐of‐the‐art Survey, number3342. Springer, Berlin, pp 126–142

    Google Scholar 

  69. Winfield AFT, Holland OE (2000) The application of wireless local area networktechnology to the control of mobile robots. Microprocess Microsyst 23:597–607

    Google Scholar 

  70. Yuh J (1996) Underwater Robots. Kluwer Academic, Boston

    Google Scholar 

Books and Reviews

  1. Balch T, Parker LE (eds) (2002) Robot Teams: From diversity to polymorphism. AK Peters, Wellesley

    Google Scholar 

  2. Bekey GA (2005) Autonomous Robots: From Biological Inspiration to Implementation and Control. MIT Press, Cambridge

    Google Scholar 

  3. Brooks RA (1999) Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge

    MATH  Google Scholar 

  4. MelhuishCR (2001) Strategies for Collective Minimalist Robotics. ProfessionalEngineering Publishing, London

    Google Scholar 

  5. NehmzowU (2003) Mobile Robotics: A Practical Introduction. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to both Wenguo Liu and Guy Théraulaz for case studies, advice and discussion during the preparation of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Winfield, A.F. (2009). Foraging Robots. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_217

Download citation

Publish with us

Policies and ethics