Skip to main content

Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Consider an arbitrary network of nodes connected by links, each of which isa resistor with a specified electrical resistance. Suppose that this network isconnected to the leads of a battery. Two natural scenarios are:(a) the “bus-bar geometry” (Fig. 1), in which the network is connected to two parallel lines (intwo dimensions), plates (in three dimensions), etc., and the battery is connected across thetwo plates, and (b) the “two-point geometry”, in which a battery isconnected to two distinct nodes, so that a current I injected at a one node and the same current withdrawn from theother node. In both cases, a basic question is: what is the nature of the current flowthrough the network?

Figure 1
figure 1_220

Resistor networks in a the bus-bar geometry, and b the two-point geometry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Conductance (G):

The relation between the current I in an electrical network and the applied voltage V: \( { I=GV } \).

Conductance exponent (t):

The relation between the conductance G and the resistor (or conductor) concentration p near the percolation threshold: \( G\sim (p-p_c)^t \).

Effective medium theory (EMT):

A theory to calculate the conductance of a heterogeneous system that is based on a homogenization procedure.

Fractal:

A geometrical object that is invariant at any scale of magnification or reduction.

Multifractal:

A generalization of a fractal in which different subsets of an object have different scaling behaviors.

Percolation :

Connectivity of a random porous network.

Percolation threshold p c :

The transition between a connected and disconnected network as the density of links is varied.

Random resistor network:

A percolation network in which the connections consist of electrical resistors that are present with probability p and absent with probability \( { 1-p } \).

Bibliography

  1. Adler J (1985) Conductance Exponents From the Analysis of Series Expansions for Random Resistor Networks. J Phys A Math Gen 18:307–314

    ADS  Google Scholar 

  2. Adler J, Meir Y, Aharony A, Harris AB, Klein L (1990) Low‐Concentration Series in General Dimension. J Stat Phys 58:511–538

    MathSciNet  ADS  MATH  Google Scholar 

  3. Aharony A, Feder J (eds) (1989) Fractals in Physics. Phys D 38:1–398

    Google Scholar 

  4. Alava MJ, Nukala PKVV, Zapperi S (2006) Statistical Models for Fracture. Adv Phys 55:349–476

    ADS  Google Scholar 

  5. Alexander S, Orbach R (1982) Density of States of Fractals: Fractons. J Phys Lett 43:L625–L631

    Google Scholar 

  6. Atkinson D, van Steenwijk FJ (1999) Infinite Resistive Lattice. Am J Phys 67:486–492

    ADS  Google Scholar 

  7. Batrouni GG, Hansen A, Nelkin M (1986) Fourier Acceleration of Relaxation Processes in Disordered Systems. Phys Rev Lett 57:1336–1339

    ADS  Google Scholar 

  8. Batrouni GG, Hansen A, Larson B (1996) Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold. Phys Rev E 53:2292–2297

    ADS  Google Scholar 

  9. Blumenfeld R, Meir Y, Aharony A, Harris AB (1987) Resistance Fluctuations in Randomly Diluted Networks. Phys Rev B 35:3524–3535

    ADS  Google Scholar 

  10. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys (Leipzig) 24:636–679. [Engl Trans: Computation of Different Physical Constants of Heterogeneous Substances. I. Dielectric Constants and Conductivenesses of the Mixing Bodies from Isotropic Substances.]

    Google Scholar 

  11. Bunde A, Havlin S (eds) (1991) Fractals and Disordered Systems. Springer, Berlin

    MATH  Google Scholar 

  12. Byshkin MS, Turkin AA (2005) A new method for the calculation of the conductance of inhomogeneous systems. J Phys A Math Gen 38:5057–5067

    MathSciNet  ADS  Google Scholar 

  13. Castellani C, Peliti L (1986) Multifractal Wavefunction at the Localisation Threshold. J Phys A Math Gen 19:L429–L432

    ADS  Google Scholar 

  14. Chan SK, Machta J, Guyer RA (1989) Large Currents in Random Resistor Networks. Phys Rev B 39:9236–9239

    ADS  Google Scholar 

  15. Coniglio A (1981) Thermal Phase Transition of the Dilute s‑State Potts and n‐Vector Models at the Percolation Threshold. Phys Rev Lett 46:250–253

    ADS  Google Scholar 

  16. Cserti J (2000) Application of the lattice Green's function of calculating the resistance of an infinite network of resistors. Am J Phys 68:896–906

    ADS  Google Scholar 

  17. de Arcangelis L, Redner S, Coniglio A (1985) Anomalous Voltage Distribution of Random Resistor Networks and a New Model for the Backbone at the Percolation Threshold. Phys Rev B 3:4725–4727

    Google Scholar 

  18. de Arcangelis L, Redner S, Herrmann HJ (1985) A Random Fuse Model for Breaking Processes. J Phys 46:L585–L590

    Google Scholar 

  19. de Arcangelis L, Redner S, Coniglio A (1986) Multiscaling Approach in Random Resistor and Random Superconducting Networks. Phys Rev B 34:4656–4673

    ADS  Google Scholar 

  20. de Gennes PG (1972) Exponents for the Excluded vol Problem as Derived by the Wilson Method. Phys Lett A 38:339–340

    ADS  Google Scholar 

  21. de Gennes PG (1976) La Notion de Percolation: Un Concept Unificateur. La Recherche 7:919–927

    Google Scholar 

  22. de Gennes PG (1976) On a Relation Between Percolation Theory and the Elasticity of Gels. J Phys Lett 37:L1–L3

    Google Scholar 

  23. den Nijs M (1979) A Relation Between the Temperature Exponents of the Eight‐Vertex and q-state Potts Model. J Phys A Math Gen 12:1857–1868

    ADS  Google Scholar 

  24. Derrida B, Vannimenus J (1982) Transfer–Matrix Approach to Random Resistor Networks. J Phys A: Math Gen 15:L557–L564

    MathSciNet  ADS  Google Scholar 

  25. Derrida B, Zabolitzky JG, Vannimenus J, Stauffer D (1984) A Transfer Matrix Program to Calculate the Conductance of Random Resistor Networks. J Stat Phys 36:31–42

    ADS  MATH  Google Scholar 

  26. Doyle PG, Snell JL (1984) Random Walks and Electric Networks. The Carus Mathematical Monograph, Series 22. The Mathematical Association of America, USA

    Google Scholar 

  27. Duxbury PM, Beale PD, Leath PL (1986) Size Effects of Electrical Breakdown in Quenched Random Media. Phys Rev Lett 57:1052–1055

    ADS  Google Scholar 

  28. Duxbury PM, Leath PL, Beale PD (1987) Breakdown Properties of Quenched Random Systems: The Random‐Fuse Network. Phys Rev B 36:367–380

    MathSciNet  ADS  Google Scholar 

  29. Dykhne AM (1970) Conductivity of a Two‐Dimensional Two-Phase System. Zh Eksp Teor Fiz 59:110–115 [Engl Transl: (1971) Sov Phys-JETP 32:63–65]

    Google Scholar 

  30. Eggarter TP, Cohen MH (1970) Simple Model for Density of States and Mobility of an Electron in a Gas of Hard-Core Scatterers. Phys Rev Lett 25:807–810

    ADS  Google Scholar 

  31. Feller W (1968) An Introduction to Probability Theory and Its Applications, vol 1. Wiley, New York

    MATH  Google Scholar 

  32. Fisch R, Harris AB (1978) Critical Behavior of Random Resistor Networks Near the Percolation Threshold. Phys Rev B 18:416–420

    ADS  Google Scholar 

  33. Fogelholm R (1980) The Conductance of Large Percolation Network Samples. J Phys C 13:L571–L574

    ADS  Google Scholar 

  34. Fortuin CM, Kasteleyn PW (1972) On the Random Cluster Model. I. Introduction and Relation to Other Models. Phys 57:536–564

    MathSciNet  ADS  Google Scholar 

  35. Frank DJ, Lobb CJ (1988) Highly Efficient Algorithm for Percolative Transport Studies in Two Dimensions. Phys Rev B 37:302–307

    MathSciNet  ADS  Google Scholar 

  36. Gingold DB, Lobb CJ (1990) Percolative Conduction in Three Dimensions. Phys Rev B 42:8220–8224

    ADS  Google Scholar 

  37. Golden K (1989) Convexity in Random Resistor Networks. In: Kohn RV, Milton GW (eds) Random Media and Composites. SIAM, Philadelphia, pp 149–170

    Google Scholar 

  38. Golden K (1990) Convexity and Exponent Inequalities for Conduction Near Percolation. Phys Rev Lett 65:2923–2926

    MathSciNet  ADS  MATH  Google Scholar 

  39. Gumbel EJ (1958) Statistics of Extremes. Columbia University Press, New York

    MATH  Google Scholar 

  40. Halperin BI, Feng S, Sen PN (1985) Differences Between Lattice and Continuum Percolation Transport Exponents. Phys Rev Lett 54:2391–2394

    ADS  Google Scholar 

  41. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal Measures and Their Singularities: The Characterization of Strange Sets. Phys Rev A 33:1141–1151

    MathSciNet  ADS  MATH  Google Scholar 

  42. Halsey TC, Meakin P, Procaccia I (1986) Scaling Structure of the Surface Layer of Diffusion‐Limited Aggregates. Phys Rev Lett 56:854–857

    ADS  Google Scholar 

  43. Harary F (1969) Graph Theory. Addison Wesley, Reading, MA

    Google Scholar 

  44. Harris AB, Kim S, Lubensky TC (1984) ε Expansion for the Conductance of a Random Resistor Network. Phys Rev Lett 53:743–746

    ADS  Google Scholar 

  45. Hentschel HGE, Procaccia I (1983) The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Phys D 8:435–444

    MathSciNet  MATH  Google Scholar 

  46. Kahng B, Batrouni GG, Redner S (1987) Logarithmic Voltage Anomalies in Random Resistor Networks. J Phys A: Math Gen 20:L827–834

    ADS  Google Scholar 

  47. Kasteleyn PW, Fortuin CM (1969) Phase Transitions in Lattice Systems with Random Local Properties. J Phys Soc Japan (Suppl) 26:11–14

    ADS  Google Scholar 

  48. Keller JB (1964) A Theorem on the Conductance of a Composite Medium. J Math Phys 5:548–549

    ADS  MATH  Google Scholar 

  49. Kenkel SW, Straley JP (1982) Percolation Theory of Nonlinear Circuit Elements. Phys Rev Lett 49:767–770

    MathSciNet  ADS  Google Scholar 

  50. Kennelly AE (1899) The Equivalence of Triangles and Three‐Pointed Stars in Conducting Networks. Electr World Eng 34:413–414

    Google Scholar 

  51. Kinzel W (1983) Directed Percolation in Percolation Structures and Processes. In: Deutscher G, Zallen R, Adler J, Hilger A, Bristol UK, Redner S (eds) Annals of the Israel Physical Society, vol 5, Percolation and Conduction in Random Resistor‐DiodeNetworks, ibid, pp 447–475

    Google Scholar 

  52. Kirchhoff G (1847) Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann Phys Chem 72:497–508. [English translation by O'Toole JB, Kirchhoff G (1958) On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents. IRE Trans Circuit Theory CT5:4–8.]

    ADS  Google Scholar 

  53. Kirkpatrick S (1971) Classical Transport in Disordered Media: Scaling and Effective‐Medium Theories. Phys Rev Lett 27:1722–1725

    ADS  Google Scholar 

  54. Kirkpatrick S (1973) Percolation and Conduction. Rev Mod Phys 45:574–588

    ADS  Google Scholar 

  55. Koplik J (1981) On the Effective Medium Theory of Random Linear Networks. J Phys C 14:4821–4837

    ADS  Google Scholar 

  56. Koplik J, Redner S, Wilkinson D (1988) Transport and Dispersion in Random Networks with Percolation Disorder. Phys Rev A 37:2619–2636

    MathSciNet  ADS  Google Scholar 

  57. Landauer R (1952) The Electrical Resistance of Binary Metallic Mixtures. J Appl Phys 23:779–784

    ADS  Google Scholar 

  58. Last BL, Thouless DJ (1971) Percolation Theory and Electrical Conductance. Phys Rev Lett 27:1719–1721

    ADS  Google Scholar 

  59. Li PS, Strieder W (1982) Critical Exponents for Conduction in a Honeycomb Random Site Lattice. J Phys C 15:L1235–L1238; Also in: Li PS, Strieder W (1982) Monte Carlo Simulation of the Conductance of the Two‐Dimensional Triangular Site Network. J Phys C 15:6591–6595

    ADS  Google Scholar 

  60. Li YS, Duxbury PM (1987) Size and Location of the Largest Current in a Random Resistor Network. Phys Rev B 36:5411–5419

    ADS  Google Scholar 

  61. Lobb CJ, Frank DJ (1979) A Large-Cell Renormalisation Group Calculation of the Percolation Conduction Critical Exponent. J Phys C 12:L827–L830

    ADS  Google Scholar 

  62. Lobb CJ, Frank DJ (1982) Percolative Conduction and the Alexander–Orbach Conjecture in Two Dimensions. Phys Rev B 30:4090–4092

    ADS  Google Scholar 

  63. Lovasz L (1993) Random Walks on Graphs: A Survey. In: Miklós D, Sós VT, Szönyi T (eds) Combinatorics, Paul Erdös is Eighty, vol 2. János Bolyai Mathematical Society, Budapest 2, pp 1–46

    Google Scholar 

  64. Ma SK (1976) Modern Theory of Critical Phenomena. WA Benjamin, Reading, MA

    Google Scholar 

  65. Machta J, Guyer RA (1987) Largest Current in a Random Resistor Network. Phys Rev B 36:2142–2146

    MathSciNet  ADS  Google Scholar 

  66. Mandelbrot BB (1974) Intermittent Turbulence in Self‐Similar Cascades: Divergence of High Moments and Dimension of the Carrier. J Fluid Mech 62:331–358

    ADS  MATH  Google Scholar 

  67. Mandelbrot BB (1982) The Fractal Geometry of Nature. WH Freeman, San Francisco

    MATH  Google Scholar 

  68. Mitescu CD, Allain A, Guyon E, Clerc J (1982) Electrical Conductance of Finite‐Size Percolation Networks. J Phys A: Math Gen 15:2523–2532

    ADS  Google Scholar 

  69. Nevard J, Keller JB (1985) Reciprocal Relations for Effective Conductivities of Anisotropic Media. J Math Phys 26:2761–2765

    MathSciNet  ADS  MATH  Google Scholar 

  70. Normand JM, Herrmann HJ, Hajjar M (1988) Precise Calculation of the Dynamical Exponent of Two‐Dimensional Percolation. J Stat Phys 52:441–446

    ADS  Google Scholar 

  71. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical Recipes in Fortran 90. The Art of Parallel Scientific Computing. Cambridge University Press, New York

    Google Scholar 

  72. Rammal R, Tannous C, Breton P, Tremblay A-MS (1985) Flicker (1/f) Noise in Percolation Networks: A New Hierarchy of Exponents Phys Rev Lett 54:1718–1721

    ADS  Google Scholar 

  73. Rammal R, Tannous C, Tremblay A-MS (1985) 1/f Noise in Random Resistor Networks: Fractals and Percolating Systems. Phys Rev A 31:2662–2671

    MathSciNet  ADS  Google Scholar 

  74. Rayleigh JW (1892) On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of a Medium. Philos Mag 34:481–502

    MATH  Google Scholar 

  75. Redner S (1990) Random Multiplicative Processes: An Elementary Tutorial. Am J Phys 58:267–272

    ADS  Google Scholar 

  76. Redner S (2001) A Guide to First‐Passage Processes. Cambridge University Press, New York

    MATH  Google Scholar 

  77. Redner S, Brooks JS (1982) Analog Experiments and Computer Simulations for Directed Conductance. J Phys A Math Gen 15:L605–L610

    ADS  Google Scholar 

  78. Roux S, Herrmann HJ (1987) Disorder‐Induced Nonlinear Conductivity. Europhys Lett 4:1227–1231

    ADS  Google Scholar 

  79. Sahimi M, Hughes BD, Scriven LE, Davis HT (1983) Critical Exponent of Percolation Conductance by Finite‐Size Scaling. J Phys C 16:L521–L527

    MathSciNet  ADS  Google Scholar 

  80. Sarychev AK, Vinogradoff AP (1981) Drop Model of Infinite Cluster for 2d Percolation. J Phys C 14:L487–L490

    ADS  Google Scholar 

  81. Senturia SB, Wedlock BD (1975) Electronic Circuits and Applications. Wiley, New York, pp 75

    Google Scholar 

  82. Skal AS, Shklovskii BI (1975) Topology of the Infinite Cluster of The Percolation Theory and its Relationship to the Theory of Hopping Conduction. Fiz Tekh Poluprov 8:1586–1589 [Engl. transl.: Sov Phys‐Semicond 8:1029–1032]

    Google Scholar 

  83. Stanley HE (1971) Introduction to Phase Transition and Critical Phenomena. Oxford University Press, Oxford, UK

    Google Scholar 

  84. Stanley HE (1977) Cluster Shapes at the Percolation Threshold: An Effective Cluster Dimensionality and its Connection with Critical‐Point Exponents. J Phys A Math Gen 10:L211–L220

    ADS  Google Scholar 

  85. Stauffer D, Aharony A (1994) Introduction to Percolation Theory, 2nd edn. Taylor & Francis, London, Bristol, PA

    Google Scholar 

  86. Stenull O, Janssen HK, Oerding K (1999) Critical Exponents for Diluted Resistor Networks. Phys Rev E 59:4919–4930

    ADS  Google Scholar 

  87. Stephen M (1978) Mean-Field Theory and Critical Exponents for a Random Resistor Network. Phys Rev B 17:4444–4453

    ADS  Google Scholar 

  88. Stephen MJ (1976) Percolation problems and the Potts model. Phys Lett A 56:149–150

    ADS  Google Scholar 

  89. Stinchcombe RB, Watson BP (1976) Renormalization Group Approach for Percolation Conductance. J Phys C 9:3221–3247

    ADS  Google Scholar 

  90. Straley JP (1977) Critical Exponents for the Conductance of Random Resistor Lattices. Phys Rev B 15:5733–5737

    ADS  Google Scholar 

  91. Straley JP (1982) Random Resistor Tree in an Applied Field. J Phys C 10:3009–3014

    MathSciNet  ADS  Google Scholar 

  92. Straley JP (1982) Threshold Behaviour of Random Resistor Networks: A Synthesis of Theoretical Approaches. J Phys C 10:2333–2341

    MathSciNet  ADS  Google Scholar 

  93. Trugman SA, Weinrib A (1985) Percolation with a Threshold at Zero: A New Universality Class. Phys Rev B 31:2974–2980

    ADS  Google Scholar 

  94. van der Pol B, Bremmer H (1955) Operational Calculus Based on the Two-Sided Laplace Integral. Cambridge University Press, Cambridge, UK

    Google Scholar 

  95. Venezian G (1994) On the resistance between two points on a grid. Am J Phys 62:1000–1004

    ADS  Google Scholar 

  96. Watson GN (1939) Three Triple Integrals. Oxford Ser 2. Quart J Math 10:266–276

    ADS  Google Scholar 

  97. Webman I, Jortner J, Cohen MH (1975) Numerical Simulation of Electrical Conductance in Microscopically Inhomogeneous Materials. Phys Rev B 11:2885–2892

    ADS  Google Scholar 

  98. Weiss GH (1994) Aspects and Applications of the Random Walk. Elsevier Science Publishing Co, New York

    MATH  Google Scholar 

  99. Wu FY (1982) The Potts Model. Rev Mod Phys 54:235–268

    ADS  Google Scholar 

  100. Zabolitsky JG (1982) Monte Carlo Evidence Against the Alexander–Orbach Conjecture for Percolation Conductance. Phys Rev B 30:4077–4079

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Redner, S. (2009). Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_220

Download citation

Publish with us

Policies and ethics