Skip to main content

Fractals in the Quantum Theory of Spacetime

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The question of the foundation of quantum mechanics from first principles remains one of the main open problems of modern physics. In its currentform, it is an axiomatic theory of an algebraic nature founded upon a set of postulates, rules and derived principles. This is to be compared withEinstein's theory of gravitation, which is founded on the principle of relativity and, as such, is of an essentially geometric nature. In its framework,gravitation is understood as a very manifestation of the curvature of a Riemannian space-time.

It is therefore relevant to question the nature of the quantum space-time and to ask for a possible refoundation of the quantum theory upongeometric first principles. In this context, it has been suggested that the quantum laws and properties could actually be manifestations of a fractaland nondifferentiable geometry of space-time [52,69,71], coming under the principle of scalerelativity [53,54]. This principle extends, to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Fractality:

In the context of the present article, the geometric property of being structured over all (or many) scales, involving explicit scale dependence which may go up to scale divergence.

Spacetime:

Inter‐relational level of description of the set of all positions and instants (events) and of their transformations. The events are defined with respect to a given reference system (i. e., in a relative way), but a spacetime is characterized by invariant relations which are valid in all reference systems, such as, e. g., the metric invariant. In the generalization to a fractal space-time, the events become explicitly dependent on resolution.

Relativity:

The property of physical quantities according to which they can be defined only in terms of relationships, not in an abolute way. These quantities depend on the state of the reference system, itself defined in a relative way, i. e., with respect to other coordinate systems.

Covariance:

Invariance of the form of equations under general coordinate transformations.

Geodesics:

Curves in a space (more generally in a spacetime) which minimize the proper time. In a geometric spacetime theory, the motion equation is given by a geodesic equation.

Quantum Mechanics:

Fundamental axiomatic theory of elementary particle, nuclear, atomic, molecular, etc. physical phenomena, according to which the state of a physical system is described by a wave function whose square modulus yields the probability density of the variables, and which is solution of a Schrödinger equation constructed from a correspondence principle (among other postulates).

Bibliography

Primary Literature

  1. Abbott LF, Wise MB (1981) Am J Phys 49:37

    MathSciNet  ADS  Google Scholar 

  2. Amelino-Camelia G (2001) Phys Lett (B)510:255

    ADS  Google Scholar 

  3. Amelino-Camelia G (2002) Int J Mod Phys (D)11:1643

    MathSciNet  ADS  Google Scholar 

  4. Auffray C, Nottale L (2007) Progr Biophys Mol Bio 97:79

    Google Scholar 

  5. Ben Adda F, Cresson J (2000) CR Acad Sci Paris 330:261

    MathSciNet  ADS  Google Scholar 

  6. Ben Adda F, Cresson J (2004) Chaos Solit Fractals 19:1323

    MathSciNet  ADS  MATH  Google Scholar 

  7. Ben Adda F, Cresson J (2005) Appl Math Comput 161:323

    MathSciNet  MATH  Google Scholar 

  8. Berry MV (1996) J Phys A: Math Gen 29:6617

    ADS  MATH  Google Scholar 

  9. Cafiero R, Loreto V, Pietronero L, Vespignani A, Zapperi S (1995) Europhys Lett 29:111

    ADS  Google Scholar 

  10. Carpinteri A, Chiaia B (1996) Chaos Solit Fractals 7:1343

    ADS  Google Scholar 

  11. Cash R, Chaline J, Nottale L, Grou P (2002) CR Biologies 325:585

    Google Scholar 

  12. Castro C (1997) Found Ph ys Lett 10:273

    Google Scholar 

  13. Castro C, Granik A (2000) Chaos Solit Fractals 11:2167

    ADS  Google Scholar 

  14. Chaline J, Nottale L, Grou P (1999) C R Acad Sci Paris 328:717

    Google Scholar 

  15. Connes A (1994) Noncommutative Geometry. Academic Press, New York

    MATH  Google Scholar 

  16. Connes A, Douglas MR, Schwarz A J High Energy Phys 02:003 (hep-th/9711162)

    Google Scholar 

  17. Cresson J (2001) Mémoire d'habilitation à diriger des recherches. Université de Franche-Comté, Besançon

    Google Scholar 

  18. Cresson J (2002) Chaos Solit Fractals 14:553

    MathSciNet  ADS  MATH  Google Scholar 

  19. Cresson J (2003) J Math Phys 44:4907

    MathSciNet  ADS  MATH  Google Scholar 

  20. Cresson J (2006) Int J Geometric Methods in Mod Phys 3(7)

    Google Scholar 

  21. Cresson J (2007) J Math Phys 48:033504

    MathSciNet  ADS  Google Scholar 

  22. Célérier MN, Nottale L (2004) J Phys A: Math Gen 37:931

    Google Scholar 

  23. Célérier MN, Nottale L (2006) J Phys A: Math Gen 39:12565

    Google Scholar 

  24. da Rocha D, Nottale L (2003) Chaos Solit Fractals 16:565

    ADS  MATH  Google Scholar 

  25. Dubois D (2000) In: Proceedings of CASYS'1999, 3rd International Conference on Computing Anticipatory Systems, Liège, Belgium, Am. Institute of Physics Conference Proceedings 517:417

    Google Scholar 

  26. Dubrulle B, Graner F, Sornette D (eds) (1997) In: Dubrulle B, Graner F, Sornette D (eds) Scale invariance and beyond, Proceedings of Les Houches school, EDP Sciences, Les Ullis/Springer, Berlin, New York, p 275

    Google Scholar 

  27. El Naschie MS (1992) Chaos Solit Fractals 2:211

    ADS  MATH  Google Scholar 

  28. El Naschie MS Chaos Solit Fractals 11:2391

    Google Scholar 

  29. El Naschie MS, Rössler O, Prigogine I (eds) (1995) Quantum mechanics, diffusion and chaotic fractals. Pergamon, New York

    Google Scholar 

  30. Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. MacGraw-Hill, New York

    MATH  Google Scholar 

  31. Georgi H, Glashow SL (1974) Phys Rev Lett 32:438

    ADS  Google Scholar 

  32. Georgi H, Quinn HR, Weinberg S (1974) Phys Rev Lett 33:451

    ADS  Google Scholar 

  33. Glashow SL (1961) Nucl Phys 22:579

    Google Scholar 

  34. Grabert H, Hänggi P, Talkner P (1979) Phys Rev A(19):2440

    Google Scholar 

  35. Green MB, Schwarz JH, Witten E (1987) Superstring Theory, vol 2. Cambridge University Press,

    Google Scholar 

  36. Grou P (1987) L'aventure économique. L'Harmattan, Paris

    Google Scholar 

  37. Grou P, Nottale L, Chaline J (2004) In: Zona Arqueologica, Miscelanea en homenaje a Emiliano Aguirre, IV Arqueologia, 230, Museo Arquelogico Regional, Madrid

    Google Scholar 

  38. Hall MJW (2004) J Phys A: Math Gen 37:9549

    ADS  MATH  Google Scholar 

  39. Hermann R (1997) J Phys A: Math Gen 30:3967

    MathSciNet  ADS  MATH  Google Scholar 

  40. Johansen A, Sornette D (2001) Physica A(294):465

    ADS  Google Scholar 

  41. Jumarie G (2001) Int J Mod Phys A(16):5061

    MathSciNet  ADS  Google Scholar 

  42. Jumarie G (2006) Chaos Solit Fractals 28:1285

    MathSciNet  ADS  MATH  Google Scholar 

  43. Jumarie G (2006) Comput Math 51:1367

    MathSciNet  MATH  Google Scholar 

  44. Jumarie G (2007) Phys Lett A 363:5

    MathSciNet  ADS  MATH  Google Scholar 

  45. Kröger H (2000) Phys Rep 323:81

    Google Scholar 

  46. Laperashvili LV, Ryzhikh DA (2001) arXiv: hep-th/0110127 (Institute for Theoretical and Experimental Physics, Moscow)

    Google Scholar 

  47. Levy-Leblond JM (1976) Am J Phys 44:271

    ADS  Google Scholar 

  48. Losa G, Merlini D, Nonnenmacher T, Weibel E (eds) Fractals in biology and medicine. vol 3. Proceedings of Fractal 2000 Third International Symposium, Birkhäuser

    Google Scholar 

  49. Mandelbrot B (1982) The fractal geometry of nature. Freeman, San Francisco

    MATH  Google Scholar 

  50. McKeon DGC, Ord GN (1992) Phys Rev Lett 69:3

    MathSciNet  ADS  MATH  Google Scholar 

  51. Nelson E (1966) Phys Rev 150:1079

    ADS  Google Scholar 

  52. Nottale L (1989) Int J Mod Phys A(4):5047

    MathSciNet  ADS  Google Scholar 

  53. Nottale L (1992) Int J Mod Phys A(7):4899

    MathSciNet  ADS  Google Scholar 

  54. Nottale L (1993) Fractal space-time and microphysics: Towards a theory of scale relativity. World Scientific, Singapore

    MATH  Google Scholar 

  55. Nottale L (1994) In: Relativity in general, (Spanish Relativity Meeting (1993)), edited Alonso JD, Paramo ML (eds), Editions Frontières, Paris, p 121

    Google Scholar 

  56. Nottale L (1996) Chaos Solit Fractals 7:877

    MathSciNet  ADS  MATH  Google Scholar 

  57. Nottale L (1997) Astron Astrophys 327:867

    ADS  Google Scholar 

  58. Nottale L (1997) In: Scale invariance and beyond, Proceedings of Les Houches school, Dubrulle B, Graner F, Sornette D (eds) EDP Sciences, Les Ullis/Springer, Berlin, New York, p 249

    Google Scholar 

  59. Nottale L (1999) Chaos Solit Fractals 10:459

    MathSciNet  ADS  MATH  Google Scholar 

  60. Nottale L (2003) Chaos Solit Fractals 16:539

    ADS  MATH  Google Scholar 

  61. Nottale L (2004) American Institute of Physics Conference Proceedings 718:68

    Google Scholar 

  62. Nottale L (2008) Proceedings of 7th International Colloquium on Clifford Algebra and their applications, 19–29 May 2005, Toulouse, Advances in Applied Clifford Algebras (in press)

    Google Scholar 

  63. Nottale L (2008) The theory of scale relativity. (submitted)

    Google Scholar 

  64. Nottale L, Auffray C (2007) Progr Biophys Mol Bio 97:115

    Google Scholar 

  65. Nottale L, Chaline J, Grou P (2000) Les arbres de l'évolution: Univers, Vie, Sociétés. Hachette, Paris, 379 pp

    Google Scholar 

  66. Nottale L, Chaline J, Grou P (2002) In: Fractals in biology and medicine, vol 3. Proceedings of Fractal (2000) Third International Symposium, Losa G, Merlini D, Nonnenmacher T, Weibel E (eds), Birkhäuser, p 247

    Google Scholar 

  67. Nottale L, Célérier MN (2008) J Phys A 40:14471

    Google Scholar 

  68. Nottale L, Célérier MN, Lehner T (2006) J Math Phys 47:032303

    Google Scholar 

  69. Nottale L, Schneider J (1984) J Math Phys 25:1296

    MathSciNet  ADS  Google Scholar 

  70. Novak M (ed) (1998) Fractals and beyond: Complexities in the sciences, Proceedings of the Fractal 98 conference, World Scientific

    Google Scholar 

  71. Ord GN (1983) J Phys A: Math Gen 16:1869

    MathSciNet  ADS  Google Scholar 

  72. Ord GN (1996) Ann Phys 250:51

    MathSciNet  ADS  MATH  Google Scholar 

  73. Ord GN, Galtieri JA (2002) Phys Rev Lett 1989:250403

    Google Scholar 

  74. Pissondes JC (1999) J Phys A: Math Gen 32:2871

    MathSciNet  ADS  MATH  Google Scholar 

  75. Polchinski J (1998) String theories. Cambridge University Press, Cambridge

    Google Scholar 

  76. Rovelli C, Smolin L (1988) Phys Rev Lett 61:1155

    MathSciNet  ADS  Google Scholar 

  77. Rovelli C, Smolin L (1995) Phys Rev D(52):5743

    MathSciNet  ADS  Google Scholar 

  78. Salam A (1968) Elementary particle theory. Svartholm N (ed). Almquist & Wiksells, Stockholm

    Google Scholar 

  79. Sornette D (1998) Phys Rep 297:239

    MathSciNet  ADS  Google Scholar 

  80. Wang MS, Liang WK (1993) Phys Rev D(48):1875

    MathSciNet  ADS  Google Scholar 

  81. Weinberg S (1967) Phys Rev Lett 19:1264

    ADS  Google Scholar 

Books and Reviews

  1. Georgi H (1999) Lie Algebras in particle physics. Perseus books, Reading, Massachusetts

    Google Scholar 

  2. Landau L, Lifchitz E (1970) Theoretical physics, 10 volumes, Mir, Moscow

    Google Scholar 

  3. Lichtenberg AJ, Lieberman MA (1983) Regular and stochastic motion. Springer, New York

    MATH  Google Scholar 

  4. Lorentz HA, Einstein A, Minkowski H, Weyl H (1923) The principle of relativity. Dover, New York

    Google Scholar 

  5. Mandelbrot B (1975) Les objets fractals. Flammarion, Paris

    MATH  Google Scholar 

  6. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freeman, San Francisco

    Google Scholar 

  7. Peebles J (1980) The large-scale structure of the universe. Princeton University Press, Princeton

    Google Scholar 

  8. Rovelli C (2004) Quantum gravity. Cambridge Universty Press, Cambridge

    MATH  Google Scholar 

  9. Weinberg S (1972) Gravitation and cosmology. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Nottale, L. (2009). Fractals in the Quantum Theory of Spacetime. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_228

Download citation

Publish with us

Policies and ethics