Skip to main content

Definition of the Subject

The terminology granular matter refers to systems with a large number of hard objects (grains) of mesoscopic size ranging from millimeters tometers. Geological examples include desert sand and the rocks of a landslide. But the scope of such systems is much broader, including powders andsnow, edible products such a seeds and salt, medical products like pills, and extraterrestrial systems such as the surface regolith of Mars and therings of Saturn. The importance of a fundamental understanding for granular matter properties can hardly be overestimated. Practical issues ofcurrent concern range from disaster mitigation of avalanches and explosions of grain silos to immense economic consequences within the pharmaceuticalindustry. In addition, they are of academic and conceptual importance as well as examples of systems far from equilibrium.

Under many conditions of interest, granular matter flows like a normal fluid [1]. In thelatter case such flows are accurately...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Granular matter:

a system comprised of a large number of grains, or particles, of macroscopic size. Examples include powders, sand, seeds, and the surface of Mars.

Granular fluid:

an activated (driven) state of granular matter such that the grains move (flow) and collide frequently.

Statistical mechanics:

a field of physics that addresses systems with many degrees of freedom based on the fundamental microscopic laws to describe derived macroscopic properties.

Macrostate :

a statistical description of a system with many degrees of freedom in terms of limited information about that system.

Hydrodynamic fields:

the local densities of mass, energy, and momentum defined at each point in the system of interest.

Normal state :

a macrostate whose time evolution is described entirely through that of the average hydrodynamic fields.

Balance equations:

exact equations for the time derivatives of the hydrodynamic fields in terms of associated fluxes and sources.

Constitutive equations:

expressions for the fluxes and sources of the balance equations as functionals of the hydrodynamic fields.

Hydrodynamics:

a macroscopic description of the system in terms of a closed, deterministic set of equations for the average hydrodynamic fields, resulting from the exact balance equations with approximate constitutive equations.

Navier–Stokes hydrodynamics:

local, first order in time, partial differential equations for states with small spatial gradients in the hydrodynamic fields (constitutive equations calculated to first order in the spatial gradients).

Bibliography

Primary Literature

  1. Kadanoff LP (1999) Built upon sand: Theoretical ideas inspired by granular flows. Rev Mod Phys 71:435–444

    ADS  Google Scholar 

  2. Haff PK (1983) Grain flow as a fluid mechanical phenomenon. J Fluid Mech 134:401–430

    ADS  MATH  Google Scholar 

  3. McLennan JA (1989) Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey

    Google Scholar 

  4. Hansen J-P, McDonald I (1986) Theory of Simple Liquids. Elsevier Press, London

    Google Scholar 

  5. Resibois P, De Leener M (1977) Classical Kinetic Theory of Fluids. Wiley, New York

    Google Scholar 

  6. See, for instance, Goldhirsch I, Tan ML, Zanetti G (1993) A molecular dynamical study of granular fluids: the unforced granular gas. J Sci Comput 8:1–40; McNamara S, Young WR (1996) Dynamics of a freely evolving, two-dimensional granular medium. Phys Rev E 53:5089–5100; Deltour P, Barrat JL (1997) Quantitative study of a freely cooling granular medium. J Phys I 7:137–151

    Google Scholar 

  7. Brilliantov N, Pöschel T (2004) Kinetic Theory of Granular Gases. Oxford, New York

    Google Scholar 

  8. Dufty JW (2001) Kinetic theory and hydrodynamics for a low density gas. Adv Complex Syst 4:397–407. cond-mat/0109215.201

    MathSciNet  MATH  Google Scholar 

  9. Brey JJ, Dufty JW, Santos A (1997) Dissipative dynamics for hard spheres. J Stat Phys 87:1051–1066

    MathSciNet  ADS  MATH  Google Scholar 

  10. Van Noije TPC, Ernst MH (2001) Kinetic theory of granular gases. In: Pöschel T, Luding S (eds) Granular Gases. Springer, New York

    Google Scholar 

  11. Dufty JW, Brey JJ, Lutsko J (2002) Diffusion in a granular fluid. I. Theory Phys Rev E 65:051303; Lutsko J, Dufty JW, Brey JJ (2002) Diffusion in a granular fluid. II. Simulation. Phys Rev E 65:051305; Dufty JW, Garzó V (2001) Mobility and diffusion in granular fluids. J Stat Phys 105:723–744

    Google Scholar 

  12. Dufty JW (2000) Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow. J Phys: Condens Matter 12:A47–A56

    ADS  Google Scholar 

  13. Dufty JW, Baskaran A, Brey JJ (2006) Linear response for a granular fluid. JSTAT L08002:1–8

    Google Scholar 

  14. Dufty JW, Baskaran A, Brey JJ (2007) Linear response and hydrodynamics for granular fluids. Phys Rev E77, 031310; Baskaran A, Dufty JW, Brey JJ (2007) Transport coefficients for the hard sphere granular fluid. Phys Rev E77, 031311

    Google Scholar 

  15. See for example articles (2002) In: Halsey T, Metha A (eds) Challenges in Granular Physics. World Scientific, Singapore

    Google Scholar 

  16. Dufty J, Brey JJ (2005) Origins of hydrodynamics for a granular gas. In: Pareschi L, Russo G, Toscani G, (eds) Modelling and Numerics of Kinetic Dissipative Systems Nova Science, New York, pp 17–30, cond-mat/0410133

    Google Scholar 

  17. Here the Navier–Stokes approximation is defined by calculating the cooling rate, energy flux, and momentum flux to first order in the gradients. However, the fluxes occur under a gradient in the macroscopic balance equations while the cooling rate does not. Hence the equations themselves do not have all terms to second order in the gradients (i. e., the additional terms of second order contributing to the cooling rate).

    Google Scholar 

  18. Huan C, Yang X, Candela D, Mair RW, and Walsworth RL (2004) NMR experiments on a three-dimensional vibrofluidized granular medium. Phys Rev E 69:041302

    ADS  Google Scholar 

  19. Bizon C, Shattuck MD, Swift JB, Swinney HL (1999) Transport coefficients for granular media from molecular dynamics simulations. Phys Rev E 60:4340–4351; Rericha EC, Bizon C, Shattuck MD, Swinney HL (2001) Shocks in supersonic sand. Phys Rev Lett 88:014302

    ADS  Google Scholar 

  20. See, for instance, Brey JJ, Ruiz-Montero MJ, Cubero D (1999) On the validity of linear hydrodynamics for low-density granular flows described by the Boltzmann equation. Europhys Lett 48:359–364; Brey JJ, Ruiz-Montero MJ, Cubero D, García-Rojo R (2000) Self-diffusion in freely evolving granular gases. Phys Fluids 12:876–883; Garzó V, Montanero JM (2002) Transport coefficients of a heated granular gas. Physica A 313:336–356; Montanero JM, Santos A, Garzó V (2005) DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli M (ed) Rarefied Gas Dynamics 24 (AIP Conf Proc, vol 72), pp 797–802

    Google Scholar 

  21. Brey JJ, Ruiz-Montero MJ, Moreno F, Garcia-Rojo R (2002) Transversal inhomogeneities in dilute vibrofluidized granular fluids. Phys Rev E 65:061302; Brey JJ, Ruiz-Montero MJ, Moreno F (2001) Hydrodynamics of an open vibrated granular system. Phys Rev E 63:061305

    ADS  Google Scholar 

  22. Brey JJ, Ruiz-Montero MJ, Maynar P, Garzia de Soria MI (2005) Hydrodynamic modes, Green–Kubo relations, and velocity correlations in dilute granular gases. J Phys Cond Mat 17:S2489–S2502

    Google Scholar 

  23. Brey JJ, Dufty JW, Kim CS, Santos A (1998) Hydrodynamics for granular flow at low density. Phys Rev E 58:4638–4653; Sela N, Goldhirsch I (1998) Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J Fluid Mech 361:41–74

    MathSciNet  Google Scholar 

  24. Dufty JW, Brey JJ (2002) Green–Kubo expressions for a low density granular gas. J Stat Phys 109:433–448. cond-mat 0201361

    MathSciNet  ADS  MATH  Google Scholar 

  25. Dufty JW (2005) Some aspects of the Boltzmann equation for granular gase. In: Capitelli M (ed) Rarefied Gas Dynamics (AIP Conf Proc 762, New York), pp 789–796

    Google Scholar 

  26. Dufty JW, Brey JJ (2005) Hydrodynamic modes for granular gases. Phys Rev E 68:030302; Brey JJ, Dufty JW (2005) Hydrodynamic modes for a granular gas from kinetic theory. Phys Rev E 72:011303

    MathSciNet  ADS  Google Scholar 

  27. Dufty JW (2007) Fourier's law for a granular fluid. J Phys Chem B 111:15605–15612

    Google Scholar 

  28. Helfand E (1960) Transport coefficients from dissipation in a canonical ensemble. Phys Rev 119:1–9

    MathSciNet  ADS  Google Scholar 

  29. Bird R, Armstrong R, Hassager O (1977) Dynamics of Polymeric Liquids. Wiley, New York

    Google Scholar 

  30. Santos A, Garzo V, Dufty JW (2004) Inherent rheology of a granular fluid in uniform shear flow. Phys Rev E 69:061303. cond-mat 0309320

    ADS  Google Scholar 

  31. Hrenya C (2007) (private communication, and to be published)

    Google Scholar 

Books and Reviews

  1. Campbell CS (1990) Rapid granular flows. Ann Rev Fluid Mech 22:57–92

    ADS  Google Scholar 

  2. Mehta A (ed) (1993) Granular Matter, An Interdisciplinary Approach. Springer, New York

    Google Scholar 

  3. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    ADS  Google Scholar 

  4. Duran J (2000) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New York

    Google Scholar 

  5. Pöschel T, Luding S (eds) (2001) Granular Gases. Springer, New York

    Google Scholar 

  6. Halsey T, Metha A (eds) (2002) Challenges in Granular Physics. World Scientific, Singapore

    MATH  Google Scholar 

  7. Campbell CS (2002) Granular shear flows in the elastic limit. J Fluid Mech 465:261–291

    MathSciNet  ADS  MATH  Google Scholar 

  8. Pöschel T, Brilliantov N (eds) (2003) Granular Gases Dynamics. Springer, New York

    Google Scholar 

  9. Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35:267–293

    MathSciNet  ADS  Google Scholar 

  10. Brilliantov N, Pöschel T (2004) Kinetic Theory of Granular Gases. Oxford, New York

    Google Scholar 

  11. Hinrichsen H, Wolf D (eds) (2004) The Physics of Granular Media. Wiley-VCH, Berlin

    Google Scholar 

  12. Coniglio A, Fierro A, Herrmann H, Nicodemi M (eds) (2004) Unifying Concepts in Granular Media and Glasses. Elsevier, Amsterdam

    Google Scholar 

  13. Pöschel T, Schwager T (2005) Computational Granular Dynamics: Models and Algorithms. Springer, New York

    Google Scholar 

  14. Dufty JW (2007) Nonequilibrium statistical mechanics and hydrodynamics for a granular fluid. Six lectures at the Second Warsaw School on Statistical Physics. Kazimierz, Poland. arXiv:0707.3714

    Google Scholar 

Download references

Acknowledgments

The author is indebted to Professor J. Javier Brey and Dr. Aparna Baskaran of Syracuse University for their collaboration on closely related linear response methods for granular fluids.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Gradient expansion In this Appendix the Liouville equation in the form (34) is written to first order in the gradients and solved. Also the invariants of the associated dynamics areidentified.

Consider first the right side of (34) which can be written equivalently as

$$ \begin{aligned} &\int \!\! \text{d}\mathbf{r}^{\prime} \frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle}\! \left\{ \nabla \cdot \left\langle \mathbf{b}_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle\! +\!\delta _{\alpha 2}\left\langle w\left(\mathbf{r}\right) ;t\right\rangle \right\} \!- \!\overline{L}\rho _{0\ell} \\ &=-\int \!\!\text{d}\mathbf{r}^{\prime} \frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \left\langle La_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle - \overline{L}\rho _{0\ell} \\ &=\int\!\! \text{d}\mathbf{r}^{\prime} \frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \int \text{d}\Gamma a_{\alpha} \left(\mathbf{r}\right) \overline{L}\left(\rho _{0\ell} +\Delta \right) -\overline{L}\rho _{0\ell}\:. \end{aligned} $$
(78)

The first equality follows from (17) and (21). The first two terms are determined by the local HCS which can be expanded to first order in the gradients

$$ \begin{aligned}[b] \rho _{0\ell} &=\rho _{0}\left(\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle \right) \\ & \quad +\int \text{d}\mathbf{r}^{\prime} \left(\frac{ \delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r} ^{\prime} \right) ;t\right\rangle} \right) _{\delta \left\langle a_{\alpha} ;t\right\rangle =0} \\ & \quad \cdot \left(\left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle -\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) +\dots \\ &=\rho _{0}\left(\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) \\ & \quad +\mathbf{m}_{\beta} \left(\mathbf{r},\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) \cdot \nabla \left\langle a_{\beta} \left(\mathbf{r}\right) ;t\right\rangle +\dots \end{aligned} $$
(79)

The functional derivatives are

$$ \begin{aligned} & \left(\frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \right) _{\delta \left\langle a_{\alpha} ;t\right\rangle =0} = \delta \left(\mathbf{r}^{\prime} \mathbf{ -r}\right) \left(\frac{\partial \rho _{0}\left(\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right)} {\partial \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle} \right. \\ & \qquad \left. +\frac{\partial \mathbf{ m}_{\beta} \left(\mathbf{r},\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle \right)} {\partial \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle} \cdot \nabla \left\langle a_{\beta} \left(\mathbf{r}\right) ;t\right\rangle \right) \\ & \qquad +\mathbf{m}_{\alpha} \left(\mathbf{r},\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) \cdot \nabla \delta \left(\mathbf{ r}^{\prime} \mathbf{-r}\right) +\dots \end{aligned} $$
(80)

Here,

$$ \begin{aligned}[b] & \mathbf{m}_{\beta} \left(\mathbf{r},\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle \right) \\ & \qquad \equiv \int \text{d}\mathbf{r}^{\prime} \left(\frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\beta} \left(\mathbf{r} ^{\prime} \right) ;t\right\rangle} \right) _{\delta \left\langle a_{\alpha} ;t\right\rangle =0}\left(\mathbf{r}^{\prime} \mathbf{-r}\right)\:, \end{aligned} $$
(81)

and \( { \rho _{0}\left(\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) } \) is the actual HCS with its global density, energy, and momentum evaluated at the common values \( { \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle } \). It follows from (32) that the averages of \( { a_{\alpha} \left(\mathbf{r}\right) } \) for \( { \rho ,\rho _{0\ell} , } \) and \( { \rho _{0} } \) are all the same. This in turn gives

$$ \int \text{d}\Gamma a_{\alpha} \left(\mathbf{r}\right) \mathbf{m}_{\beta} =0=\int \text{d}\Gamma a_{\alpha} \left(\mathbf{r}\right) \Delta\:. $$
(82)

With these results and the fact that Δ is of first order in the gradients, (78) to first orderin the gradients becomes

$$ \begin{aligned} \int \!\!\! \text{d}\mathbf{r}^{\prime} \! \frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \! \left\{ \nabla \! \cdot \left\langle \mathbf{b}_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \! + \!\delta _{\alpha 2}\left\langle w\left(\mathbf{r}\right) ;t\right\rangle \right\} \! - \!\overline{L}\rho _{0\ell} \\ \rightarrow \overline{\mathcal{L}}\rho _{0}-\left(1-\mathcal{P}\right) \left(I\overline{\mathcal{L}}+K^\text{T}\right) _{\alpha \beta} \mathbf{m} _{\beta} \cdot \nabla \left\langle a_{\alpha} ;t\right\rangle +\mathcal{P} \overline{\mathcal{L}}\Delta\:. \end{aligned} $$
(83)

The matrix \( { K^\text{T} } \) is the transpose of K

$$ K_{\alpha \beta} =\delta _{\alpha 2}\frac{\partial \omega (\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle)}{\partial \left\langle a_{\beta} \left(\mathbf{r}\right) ;t\right\rangle} \:, $$
(84)

and I is the unit matrix. The generator \( { \overline{\mathcal{L}} } \) is the same as that of (12) with \( { \omega \rightarrow \omega _{0}(\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle) } \) for the HCS evaluated at the common values \( { \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle } \)

$$ \overline{\mathcal{L}}=-\omega _{0}(\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle)\partial _{\left\langle e\left(\mathbf{r}\right) ;t\right\rangle} +\overline{L}\:. $$
(85)

Finally, \( { \mathcal{P} } \) is the projection operator

$$ \mathcal{P}X=\frac{\partial \rho _{0}}{\partial \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle} \int \text{d}\Gamma a_{\alpha} \left(\mathbf{r}\right) X\:. $$
(86)

The first term of (83) vanishes by definition of the HCS, \( { \rho _{0} } \), confirming that the right side of the Liouville Eq. (34) is of first order in the gradients.

At this point, the Liouville Eq. (34) becomes

$$ \begin{aligned}[b] \partial _{t}\Delta -\int \text{d}\mathbf{r}^{\prime} \frac{\delta \Delta} {\delta \left\langle a_{2}\left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \omega _{0}(\left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle)+\mathcal{P}\overline{L}\Delta \\ =\left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\alpha} ^{\prime} \cdot \nabla \left\langle a_{\alpha} ;t\right\rangle\:, \end{aligned} $$
(87)
$$ \boldsymbol{\Upsilon} _{\alpha} ^{\prime} \equiv -\left(I\overline{\mathcal{ L}}+K^\text{T}\right) _{\alpha \beta} \mathbf{m}_{\beta}\:. $$
(88)

This equation is still exact up through contributions of first order in the gradients. It has solutions of the form

$$ \Delta \left(\Gamma ,t\mid \left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) =\mathbf{G}_{\nu} \left(\Gamma ,t,\left\langle a_{\alpha} \left(\mathbf{r}\right) ;t\right\rangle \right) \cdot \boldsymbol{\nabla} \left\langle a_{\nu} \left(\mathbf{r}\right) ;t\right\rangle\:, $$
(89)

Substitution into (87) gives the corresponding equation for \( { \mathbf{ G}_{\nu} } \)

$$ \partial _{t}\mathbf{G}_{\nu} +\left(1-\mathcal{P}\right) \left(I\overline{ \mathcal{L}}+K^\text{T}\right) _{\nu \beta} \mathbf{G}_{\beta} =\left(1-\mathcal{ P}\right) \boldsymbol{\Upsilon} _{\nu} ^{\prime}\:, $$
(90)

with the solution

$$ \mathbf{G}_{\nu} \left(\Gamma ,t,\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle \right) \\ =\int_{0}^{t}\text{d}t^{\prime} \left(\text{e}^{-\left(1- \mathcal{P}\right) \left(I\overline{\mathcal{L}}+K^\text{T}\right) t^{\prime}} \right) _{\nu \beta} \left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\beta} ^{\prime}\:. $$
(91)

It is possible to add to (87) an arbitrary solution to the homogeneous equation corresponding to (90). As described in the text, this represents the dynamics of the first stage of rapid velocity relaxation to the local HCS. The interest here is in the second stage where possible formation of a normal solution occurs. Hence, it is simpler to choose that stage for initial conditions (initial local HCS).

Define the derivatives of the HCS by

$$ \Psi _{\beta} \left(\Gamma ,\left\langle a_{\alpha} \left(\mathbf{r} \right) ;t\right\rangle \right) \equiv \frac{\partial \rho _{0}}{\partial \left\langle a_{\beta} \left(\mathbf{r}\right) ;t\right\rangle}\:. $$
(92)

Then differentiate the equation for \( { \rho _{0} } \)

$$ \frac{\partial} {\partial \left\langle a_{\beta} \left(\mathbf{r}\right) ;t\right\rangle} \overline{\mathcal{L}}\rho _{0}=0\:, $$
(93)

to get

$$ \left(I\overline{\mathcal{L}}_{T}+K^\text{T}\right) _{\nu \beta} \Psi _{\beta} =0\:. $$
(94)

Since \( { \left(I\overline{\mathcal{L}}_{T}+K^\text{T}\right) } \) is the generator for the dynamics in (91) this shows that \( { \Psi _{\beta} } \) are the invariants of that dynamics.

The projection operator \( { \mathcal{P} } \)in (95) acts only on phase functions with translational invariance. In that case (86) simplifies to

$$ \begin{aligned} \mathcal{P}X=\Psi _{\beta} \int \text{d}\Gamma A_{\beta} X\:,\quad A_{\beta} =V^{-1}\int \text{d}\mathbf{r}a_{\alpha} \left(\mathbf{r}\right)\:. \end{aligned} $$
(95)

The first equality of (82) becomes \( { \mathcal{P}\mathbf{m}_{\beta} =0\:. } \) This in turn gives

$$ \begin{aligned} \mathbf{m}_{\beta} &=\left(1-\mathcal{P}\right) \mathbf{m}_{\beta} =\left(1- \mathcal{P}\right) \mathbf{M}_{\beta}\:,\\ \mathbf{M}_{\beta} &\equiv \int \text{d}\mathbf{r}^{\prime} \left(\frac{\delta \rho _{0\ell}} {\delta \left\langle a_{\alpha} \left(\mathbf{r}^{\prime} \right) ;t\right\rangle} \right) _{\delta \left\langle a_{\alpha} ;t\right\rangle =0}\mathbf{r} ^{\prime}\:. \end{aligned} $$
(96)

Then \( { \left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\alpha} ^{\prime} } \) simplifies to

$$ \begin{aligned}[b] \left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\alpha} ^{\prime} &=-\left(1-\mathcal{P}\right) \left(I\overline{\mathcal{L}}+K^\text{T}\right) _{\alpha \beta} \left(1-\mathcal{P}\right) \mathbf{M}_{\beta} \\ &\equiv \left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\alpha} \end{aligned} $$
(97)

with

$$ \boldsymbol{\Upsilon} _{\alpha} =-\left(I\overline{\mathcal{L}} +K^\text{T}\right) _{\alpha \beta} \mathbf{M}_{\beta}\:. $$
(98)

Use has been made of the identity

$$ \left(1-\mathcal{P}\right) \left(I\overline{\mathcal{L}}+K^\text{T}\right) \mathcal{P}=0\:. $$
(99)

This same identity leads to a simplification of the dynamics in (91)

$$ \text{e}^{-\left(1-\mathcal{P}\right) \left(I\overline{\mathcal{L}}+K^\text{T}\right) t^{\prime}} \left(1-\mathcal{P}\right) =\left(1-\mathcal{P}\right) \text{e}^{-\left(I\overline{\mathcal{L}}+K^\text{T}\right) t^{\prime}} \left(1- \mathcal{P}\right)\:. $$
(100)

In summary, the solution to the Liouville equation to first order in the gradients is

$$ \begin{aligned}[b] \rho \left(\Gamma ,t\mid \left\langle a_{\alpha} ;t\right\rangle \right) & =\rho _{0}\left(\Gamma ,\left\langle a_{\alpha} (\mathbf{r)} ;t\right\rangle \right) \\ & \quad +\left(1-\mathcal{P}\right) \left( \vrule width 0mm height 4mm \mathbf{ M}_{\beta} \left(\Gamma ,\left\langle a_{\alpha} (\mathbf{r)} ;t\right\rangle \right) \right. \\ & \quad \left. +\int_{0}^{t}\text{d}t^{\prime} \left(\text{e}^{-\left(I\overline{\mathcal{L}} +K^\text{T}\right) t^{\prime}} \right) _{\nu \beta} \right. \\ & \quad \left. \cdot \left(1-\mathcal{P}\right) \boldsymbol{\Upsilon} _{\beta} \left(\Gamma ,\left\langle a_{\alpha} ( \mathbf{r)};t\right\rangle \right) \vrule width 0mm height 4mm \right) \\ & \quad \cdot \nabla \left\langle a_{\nu} \left(\mathbf{r}\right) ;t\right\rangle\:. \end{aligned} $$
(101)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Dufty, J.W. (2009). Granular Flows. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_259

Download citation

Publish with us

Policies and ethics