Skip to main content
  • 125 Accesses

Definition of the Subject

Immunecomputing, or Artificial Immune Systems (AIS), has recently emerged as a computational intelligence approach that show great promise. Inspired by the complexity of the immune system, computer scientists and engineers have created systems that in some way mimic or capture certain computationally appealing properties of the immune system, with the aim of building more robust and adaptable solutions. AIS have been defined by [28] as:

“adaptive systems, inspired by theoretical immunology and observed immune functions, principle and models, which are applied to problem solving”.

However, in order to build AIS an interdisciplinary approach is required that employs modeling of immunology (both mathematical and computational) in order to understand the underlying complexity inherent within the immune system. AIS do not rival their natural counterparts, they do not exhibit the same level of complexity or even perform the same function, but...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.artificial-immune-systems.org

  2. 2.

    It should be noted that this is a slight departure from the immune network theory, where both suppression and stimulation occur between cells

Abbreviations

Glossary:

Glossary based on [28]:

Affinity:

Measure or tightness of the binding between an antigen combining site and an antigenic determinant; the stronger the binding, the higher the affinity.

Antigen:

Any substance that when introduced into the body, is capable of inducing an immune response.

Antigen presenting cells (APC):

B-cells, cells of the monocyte Lineage (including macrophages as well as dendritic cells), and various other body cells that present antigen in a form that B- and T-cells can recognize.

Antibody:

A soluble protein molecule produced and secreted by B-cells in response to an antigen. Antibodies are usually defined in terms of their specific binding to an antigen.

B cell:

White blood cells expressing immunoglobulin molecules on its surface. Also known as B‑lymphocytes, they are derived from the bone marrow and develop into plasma cells that are the main antibody secretors.

Clonal selection theory:

A theory that states that the specificity and diversity of an immune response are the result of selection by antigen of specifically reactive clones from a large repertoire of preformed lymphocytes, each with individual specificities.

Dendritic cell:

Set of antigen‐presenting cells (APCs) present in lymph nodes, spleen and at low levels in blood, which are particularly active in stimulating T-cells.

Lymph node:

Small organs of the immune system, widely distributed throughout the body and linked by lymphatic vessels.

Lymphocyte:

White blood cell found in blood, tissue, and in lymphoid organs.

Major histocompatability:

A group of genes encoding polymorphic.

Complex (MHC):

Cell‐surface molecules (MHC class I and II) that are involved in controlling several aspects of the immune response. MHC genes code for self‐markers on all body cells and play a major role in transplantation rejection.

Pathogen:

A microorganism that causes disease.

T Cell:

White blood cell that orchestrate and/or directly participate in the immune defenses.

Bibliography

Primary Literature

  1. Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J (2003) Danger theory: The link between AIS and IDS? In: Timmis J, Bentley P, Hart E (eds) (2003) Proc of the 2nd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 2787. Springer, Berlin, pp 147–155

    Chapter  Google Scholar 

  2. Andrews PS, Timmis J (2005) Inspiration for the next generation of artificial immune systems. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 126–138

    Google Scholar 

  3. Andrews PS, Timmis J (2005) On diversity and artificial immune systems: Incorporating a diversity operator into aiNet. In: Proceedings of the International Conference on Natural and Artificial Immune Systems (NAIS05). LNCS, vol 391. Springer, Berlin, pp 293–306

    Google Scholar 

  4. Andrews PS, Timmis J (2006) A computational model of degeneracy in a lymph node. In: Bersini H, Carneiro J (eds) (2006) Proc of 5th International Conference on Artificial Immune Systems. LNCS. Springer, Berlin, pp 164–177

    Chapter  Google Scholar 

  5. Ayara M (2005) An immune inspired solution for adaptable error detection in embedded systems. Ph D thesis, University of Kent

    Google Scholar 

  6. Ayara M, Timmis J, de Lemos R, de Castro L, Duncan R (2002) Negative selection: How to generate detectors. In: Proc of the First International Conference on Artificial Immune Systems (ICARIS‐2002). University of Kent, Canterbury, pp 89–98

    Google Scholar 

  7. Balthrop J, Forrest S, Glickman M (2002) Revisiting lisys: Parameters and normal behavior. In: Proceedings of Congress On Evolutionary Computation (CEC). IEEE Press, pp 1045–1050

    Google Scholar 

  8. Bentley PJ, Greensmith J, Ujjin S (2005) Two ways to grow tissue for artificial immune systems. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 139–152

    Google Scholar 

  9. Berek C, Ziegner M (1993) The maturation of the immune response. Immunol Today 14:200–402

    Article  Google Scholar 

  10. Bersini H (1991) Immune network and adaptive control. In: Proceedings of the 1st European Conference on Artificial Life (ECAL). MIT Press, Cambridge, pp 217–226

    Google Scholar 

  11. Bersini H (1992) Reinforcement and recruitment learning for adaptive process control. In: Proc Int Fuzzy Association Conference (IFAC/IFIP/IMACS) on Artificial Intelligence in Real Time Control, pp 331–337

    Google Scholar 

  12. Bersini H, Carneiro J (eds) (2006) Proc of 5th International Conference on Artificial Immune Systems. LNCS, vol 4163. Springer, Berlin

    Google Scholar 

  13. Bersini H, Varela F (1994) The immune learning mechansims: Recruitment, reinforcement and their applications. Chapman Hall

    Google Scholar 

  14. Bezerra G, Barra T, de Castro LN, Von Zuben F (2005) Adaptive radius immune algorithm for data clustering. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 290–303

    Google Scholar 

  15. Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge

    Google Scholar 

  16. Canham RO, Tyrrell AM (2002) A multilayered immune system for hardware fault tolerance within an embryonic array. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 3–11

    Google Scholar 

  17. Clark E, Hone A, Timmis J (2005) A Markov chain model of the B-cell algorithm. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 318–330

    Google Scholar 

  18. Cohen IR (2000) Tending Adam's garden: Evolving the cognitive immune self. Elsevier Academic Press

    Google Scholar 

  19. Cooke D, Hunt J (1995) Recognising promoter sequences using an artificial immune system. In: Proceedings of Intelligent Systems in Molecular Biology. AAAI Press, pp 89–97

    Google Scholar 

  20. Cutello V, Nicosia G, Parvone M (2004) Exploring the capability of immune algorithms: A characterisation of hypermutation operators. In: Nicosia G, Cutello V, Bentley P, Timmis J (eds) (2004) Proc of the 3rd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3239. Springer, Berlin, pp 263–276

    Google Scholar 

  21. Cutello V, Nicosia G, Pavone M, Timmis J (2007) An immune algorithm for protein structure prediction on lattice models. IEEE Trans Evol Comp 11(1):101–117

    Article  Google Scholar 

  22. Cutello V, Nicosia G, Oliveto P, Romeo M (2007) On the convergence of immune algorithms. In: Proc of Foundations of Computational Intelligence. IEEE Press, pp 409–416

    Google Scholar 

  23. Dasgupta D (1999) Artificial Immune Systems and their Applications. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Dasgupta D, Forrest S (1995) Tool breakage detection in milling operations using a negative selection algorithm. Tech Rep Report, No CS95-5. Department of Computer Science, University of New Mexico

    Google Scholar 

  25. Dasgupta D, Majumdar NS (2002) Anomaly detection in multidimensional data using negative selection algorithm. In: Proc of Congress on Evolutionary Computation (CEC), Honolulu, Hawaii. IEEE Press, pp 1039–1044

    Google Scholar 

  26. Dasgupta D, Nino F (2000) A comparison of negative and positive selection algorithms in novel pattern detection. In: Proc of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Nashville, 8–11 October

    Google Scholar 

  27. de Castro LN, Timmis J (2002) An artificial immune network for multi modal optimisation. In: Proceedings of the World Congress on Computational Intelligence WCCI, Honolulu, HI. IEEE Press, pp 699–704

    Google Scholar 

  28. de Castro LN, Timmis J (2002) Artificial immune systems: A new computational intelligence approach. Springer, Berlin

    MATH  Google Scholar 

  29. de Castro LN, Timmis J (2002) Hierarchy and convergence of immune networks: Basic ideas and preliminary results. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 231–240

    Google Scholar 

  30. de Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: GECCO Workshop on Artificial Immune Systems and Their Applications, pp 36–37

    Google Scholar 

  31. de Castro LN, Von Zuben FJ (2001) aiNet: An artificial immune network for data analysis. Idea Group Publishing, pp 231–259

    Google Scholar 

  32. de Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comp 6(3):239–251

    Article  Google Scholar 

  33. Ebner M, Breunig H-G, Albert J (2002) On the use of negative selection in an artificial immune system. In: Proc of Genetic and Evolutionary Computation Conference (GECCO). Morgan Kaufman Publishers, San Francisco/New York, pp 957–964

    Google Scholar 

  34. Esponda F, Forrest S, Helman P (2004) A formal framework for positive and negative detection schemes. IEEE Trans Syst Man Cybern B 34(1):357–373

    Article  Google Scholar 

  35. Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Physica D 22:187–204

    Article  MathSciNet  Google Scholar 

  36. Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self‐nonself discrimination in a computer. In: Proc IEEE Symposium on Research Security and Privacy. IEEE Press, pp 202–212

    Google Scholar 

  37. Forrest S, Hofmeyr S, Somayaji A (1997) Computer immunology. Comm ACM 40(10):88–96

    Article  Google Scholar 

  38. Freitas A, Timmis J (2003) Revisiting the foundations of artificial immune systems: A problem oriented perspective. In: Timmis J, Bentley P, Hart E (eds) (2003) Proc of the 2nd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 2787. Springer, Berlin, pp 229–241

    Chapter  Google Scholar 

  39. Garrett SM (2005) How do we evaluate artificial immune systems? Evol Comput 13(2):145–177

    Article  Google Scholar 

  40. Gaspar A, Hirsbrunner B (2002) From optimization to learning in learning in changing environments: The pittsburgh immune classifier system. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 190–199

    Google Scholar 

  41. Germain RN (2004) An innately interesting decade of research in immunology. Nature Medicine 10:1307–1320

    Article  Google Scholar 

  42. González F, Dagupta D (2003) Anomaly detection using real‐valued negative selection. Genet Program Evolvable Mach 4(4):383–403

    Google Scholar 

  43. González F, Dasgupta D, Kozma R (2002) Combining negative selection and classification techniques for anomaly detection. In: Congress on Evolutionary Computation. IEEE, pp 705–710

    Google Scholar 

  44. González F, Dasgupta D, Gómez J (2003) The effect of binary matching rules in negative selection. In: Genetic and Evolutionary Computation – GECCO-2003. Lecture Notes in Computer Science, vol 2723. Springer, Chicago, pp 195–206

    Google Scholar 

  45. Goodman D, Boggess L, Watkins A (2002) Artificial immune system classification of multiple‐class problems. In: Proc of Intelligent Engineering Systems. ASME, pp 179–184

    Google Scholar 

  46. Goodman D, Boggess L, Watkins A (2003) An investigation into the source of power for AIRS, an artificial immune classification system. In: Proc Int Joint Conf Neural Networks. IEEE, pp 1678–1683

    Google Scholar 

  47. Greensmith J, Aickelin U, Cayzer S (2005) Introducing dendritic cells as a novel immune‐inspired algorithm for anomaly detection. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 153–167

    Google Scholar 

  48. Greensmith J, Aickelin U, Twycross J (2006) Articulation and clarification of the dendritic cell algorithm. In: Bersini H, Coutinho A (eds) Proceedings of the 5th International Conference on Artificial Immune Systems. LNCS, vol 4163. Springer, Berlin

    Google Scholar 

  49. Hart E (2005) Not all balls are round: An investigation of alternative recognition‐region shapes. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 29–42

    Google Scholar 

  50. Hart E, Ross P (2002) Exploiting the analogy between immunology and sparse distributed memories: A system for clustering non‐stationary data. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 49–58

    Google Scholar 

  51. Hart E, Ross P (2004) Studies on the implications of shape-space models for idiotypic networks. In: Nicosia G, Cutello V, Bentley P, Timmis J (eds) (2004) Proc of the 3rd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3239. Springer, Berlin, pp 413–426

    Google Scholar 

  52. Hart E, Timmis J (2005) Application areas of AIS: The past, the present and the future. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 483–497

    Google Scholar 

  53. Hightower RR, Forrest SA, Perelson AS (1995) The evolution of emergent organization in immune system gene libraries. In: Proceedings of the 6th International Conference on Genetic Algorithms. Morgan Kaufmann, pp 344–350

    Google Scholar 

  54. Hofmeyr S, Forrest S (1999) Immunity by design: An artificial immune system. In: Proc of Genetic and Evolutionary Computation Conference (GECCO), pp 1289–1296

    Google Scholar 

  55. Hofmeyr S, Forrest S (2000) Architecture for an artificial immune system. Evol Comput 7(1):1289–1296

    Google Scholar 

  56. Hunt J, Cooke D (1996) Learning using an artificial immune system. J Netw Comput Appl 19:189–212

    Article  Google Scholar 

  57. Hunt J, Timmis J, Cooke D, Neal M, King C (1998) JISYS: Development of an artificial immune system for real-world applications. In: Dasgupta D (ed) Artificial Immune Systems and their Applications. Springer, Berlin, pp 157–186

    Google Scholar 

  58. Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin

    Google Scholar 

  59. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Inst Pasteur) 125C:373–389

    Google Scholar 

  60. Ji Z, Dasgupta D (2004) Augmented negative selection algorithm with variable‐coverage detectors. In: Congress on Evolutionary Computation. IEEE, pp 1081–1088

    Google Scholar 

  61. Ji Z, Dasgupta D (2004) Real‐valued negative selection algorithm with variable‐sized detectors. In: Genetic and Evolutionary Computation – GECCO-2004, Part I. Lecture Notes in Computer Science, vol 3102. Springer, Seattle, pp 287–298

    Chapter  Google Scholar 

  62. Ji Z, Dasgupta D (2005) Estimating the detector coverage in a negative selection algorithm. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO). ACM Press, pp 281–288

    Google Scholar 

  63. Ji Z, Dasgupta D (2006) Applicability issues of the real‐valued negative selection algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO). ACM Press, pp 111–118

    Google Scholar 

  64. Ji Z, Dasgupta D, Yang Z, Teng H (2006) Analysis of dental images using artificial immune systems. In: Proceedings of Congress On Evolutionary Computation (CEC). IEEE Press, pp 528–535

    Google Scholar 

  65. Kelsey J, Timmis J (2003) Immune inspired somatic contiguous hypermutation for function optimisation. In: Proc of Genetic and Evolutionary Computation Conference (GECCO). LNCS, vol 2723. Springer, Berlin, pp 207–218

    Google Scholar 

  66. Kelsey J, Timmis J, Hone A (2003) Chasing chaos. In: Proc of Congress on Evolutionary Computation (CEC). IEEE, Canberra, pp 89–98. http://www.cs.ukc.ac.uk/pubs/2002/1504

  67. Kim J (2002) Integrating artificial immune algorithms for intrusion detection. Ph D thesis, UCL

    Google Scholar 

  68. Kim J, Bentley PJ (2001) An evaluation of negative selection in an artificial immune system for network intrusion detection. In: Proc of Genetic and Evolutionary Computation Conference (GECCO), San Francisco, USA. Morgan Kaufmann, pp 1330–1337

    Google Scholar 

  69. Kim J, Bentley PJ (2001) Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with negative selection operator. In: Proc of Congress on Evolutionary Computation (CEC), Seoul, Korea. Morgan Kaufmann, pp 1244–1252

    Google Scholar 

  70. Kim J, Bentley PJ (2002) Immune memory in the dynamic clonal selection algorithm. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 59–67

    Google Scholar 

  71. Knight T, Timmis J (2003) A multi‐layered immune inspired machine learning algorithm. In: Lotfi A, Garibaldi M (eds) Applications and Science in Soft Computing. Springer, Berlin, pp 195–202. http://www.cs.kent.ac.uk/pubs/2003/1760

    Google Scholar 

  72. Krohling R, Zhou Y, Tyrrell A (2002) Evolving FPGA-based robot controllers using an evolutionary algorithm. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 41–46

    Google Scholar 

  73. Matzinger P (1997) An innate sense of danger. Semin Immunol 10(5):399–415

    Article  Google Scholar 

  74. Matzinger P (2002) The danger model: A renewed sense of self. Science 296:301–305

    Article  ADS  Google Scholar 

  75. Mendao M, Timmis J, Andrews PS, Davies M (2007) The immune system in pieces: Computational lessons from degeneracy in the immune system. In: Fogel DB (ed) Proc of Foundations of Computational Intelligence. IEEE Press, pp 394–400

    Google Scholar 

  76. Neal M (2002) An artificial immune system for continuous analysis of time‐varying data. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 76–85

    Google Scholar 

  77. Nicosia G (2004) Immune algorithms for optimization and protein structure prediction. Ph D thesis, University of Catania

    Google Scholar 

  78. Nicosia G, Cutello V, Bentley P, Timmis J (eds) (2004) Proc of the 3rd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3239. Springer, Berlin

    Google Scholar 

  79. Perelson AS (1989) Immune network theory. Immunol Rev 110:5–36

    Article  Google Scholar 

  80. Secker A, Freitas A, Timmis J (2003) AISEC: An artificial immune system for email classification. In: Proc of Congress on Evolutionary Computation (CEC). IEEE Press, pp 131–139

    Google Scholar 

  81. Singh S (2002) Anomaly detection using negative selection based on the r‑contiguous matching rule. In: Timmis J, Bentley PJ (eds) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS. University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp 99–106. http://www.aber.ac.uk/icaris-2002

  82. Stepney S, Smith R, Timmis J, Tyrrell A, Neal M, Hone A (2006) Conceptual frameworks for artificial immune systems. Int J Unconv Comput 1(3):315–338

    Google Scholar 

  83. Stibor T, Timmis J (2007) An investigation into the compression quality of ainet. In: Fogel D (ed) Proc of Foundations of Computational Intelligence. IEEE Press

    Google Scholar 

  84. Stibor T, Bayarou KM, Eckert C (2004) An investigation of R-chunk detector generation on higher alphabets. In: Proc of Genetic and Evolutionary Computation Conference (GECCO). LNCS, vol 3102. Springer, Berlin, pp 299–307

    Google Scholar 

  85. Stibor T, Timmis J, Eckert C (2005) A comparative study of real‐valued negative selection to statistical anomaly detection techniques. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3627. Springer, Berlin, pp 262–275

    Google Scholar 

  86. Stibor T, Mohr P, Timmis J, Eckert C (2005) Is negative selection appropriate for anomaly detection? In: Proc of Genetic and Evolutionary Computation Conference (GECCO). ACM Press

    Google Scholar 

  87. Stibor T, Timmis J, Eckert C (2006) Generalization regions in hamming negative selection. In: Intelligent Information Processing and Web Mining. Advances in Soft Computing. Springer, Berlin, pp 447–456

    Chapter  Google Scholar 

  88. Tarakanov AO, Skormin VA, Sokolova SP (2003) Immunocomputing: Principles and Applications. Springer, New York

    MATH  Google Scholar 

  89. Tarakanov AO, Goncharova LB, Tarakanov OA (2005) A cytokine formal immune network. In: Advances in Artificial Life, 8th European Conference, ECAL 2005, Canterbury, UK, 5–9 September 2005, pp 510–519

    Google Scholar 

  90. Tarakanov AO, Kvachev SV, Sukhorukov AV (2005) A formal immune network and its implementation for on-line intrusion detection. In: MMM-ACNS, pp 394–405

    Google Scholar 

  91. Timmis J (2000) Artificial immune systems: A novel data analysis technique inspired by the immune system. Ph D thesis, University of Wales

    Google Scholar 

  92. Timmis J (2007) Artificial immune systems: Today and tommorow. Natural Comput 6(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  93. Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury

    Google Scholar 

  94. Timmis J, Edmonds C (2004) A comment on opt-AINet: An immune network algorithm for optimisation. In: Proc of Genetic and Evolutionary Computation Conference (GECCO). LNCS, vol 3102. Springer, Berlin, pp 308–317

    Google Scholar 

  95. Timmis J, Knight T (2001) Artificial immune systems: Using the immune system as inspiration for data mining. In: Abbas H, Ruhul A, Sarker A, Newton S (eds) Data Mining: A Heuristic Approach. Idea Group, pp 209–230

    Google Scholar 

  96. Timmis J, Neal M (2001) A resource limited artificial immune system for data analysis. Knowl Based Syst 14(3–4):121–130

    Article  Google Scholar 

  97. Timmis J, Neal M, Hunt J (2000) An artificial immune system for data analysis. Biosystems 55(1/3):143–150

    Article  Google Scholar 

  98. Timmis J, Bentley P, Hart E (eds) (2003) Proc of the 2nd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 2787. Springer, Berlin

    Google Scholar 

  99. Timmis J, Edmonds C, Kelsey J (2004) Assessing the performance of two immune inspired algorithms and a hybrid genetic algorithm for function optimisation. In: Proc of Congress on Evolutionary Computation (CEC), vol 1. IEEE, pp 1044–1051

    Google Scholar 

  100. Twycross J, Aickelin U (2006) libtissue: Implementing innate immunity. In: Proc Congress on Evoutionary Computation. IEEE Press, pp499–506

    Google Scholar 

  101. Varela F, Coutinho A, Dupire B, Vaz N (1988) Cognitive networks: Immune, neural and otherwise. J Theor Imm 2:359–375

    Google Scholar 

  102. Watkins A (2001) AIRS: A resource limited artificial immune classifier. Master's thesis, Mississippi State University

    Google Scholar 

  103. Watkins A (2005) Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms. Ph D thesis, University of Kent

    Google Scholar 

  104. Watkins A, Timmis J (2004) Exploiting parallelism inherent in AIRS, an artificial immune classifier. In: Nicosia G, Cutello V, Bentley P, Timmis J (eds) (2004) Proc of the 3rd International Conference on Artificial Immune Systems (ICARIS). LNCS, vol 3239. Springer, Berlin, pp 427–438

    Google Scholar 

  105. Watkins A, Xintong B, Phadke A (2003) Parallelizing an immune‐inspired algorithm for efficient pattern recognition. In: Intelligent Engineering Systems through Artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life. ASME Press, pp 224–230

    Google Scholar 

  106. Watkins A, Timmis J, Boggess L (2004) Artificial immune recognition system (AIRS): An immune inspired supervised machine learning algorithm. Genet Program Evolvable Mach 5(3):291–318. http://www.cs.kent.ac.uk/pubs/2004/1634

    Article  Google Scholar 

  107. Whitesides GM, Boncheva M (2002) Beyond molecules: Self‐assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99(8):4769–4774

    Article  ADS  Google Scholar 

  108. Wierzchon S, Kuzelewska U (2002) Stable clusters formation in an artificial immune system. In: Timmis J, Bentley P (eds) (2002) Proc of the 1st International Conference on Artificial Immune Systems (ICARIS). University of Kent, Canterbury, pp 68–75

    Google Scholar 

Books and Reviews

  1. Dasgupta D (1999) Artificial Immune Systems and Their Applications. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Cohen I, Segal L (2001) Design Principles for the Immune System and Other Distributed Autonomous Systems. SFT, Oxford University Press

    Google Scholar 

  3. de Castro LN, Timmis J (2002) Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Berlin

    MATH  Google Scholar 

  4. Tarakanov AO, Skormin VA, Sokolova SP (2003) Immunocomputing: Principles and Applications. Springer, New York

    MATH  Google Scholar 

  5. Ishida Y (2004) Immunity‐Based Systems: A Design Perspective. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Timmis, J. (2009). Immunecomputing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_282

Download citation

Publish with us

Policies and ethics