Skip to main content

Isomorphism Theory in ErgodicTheory

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 240 Accesses

Definition of the Subject

Our main goal in this article is to consider when two measure preserving transformations are in some sense different presentations of the same underlying object. To make this precise we say two measure preserving maps \( { (\mathbf{X},T) } \) and \( { (\mathbf{Y},S) } \) are isomorphic if there exists a measurable map \( { \phi \colon X \to Y } \) such that

  1. (1)

    ϕ is measure preserving,

  2. (2)

    ϕ is invertible almost everywhere and

  3. (3)

    \( { \phi(T(x))=S(\phi(x)) } \) for almost every x.

The main goal of the subject is to construct a collection of invariants of a transformation such that a necessary condition for two transformations to be isomorphic is that the invariant be the same for both transformations. Another goal of the subject is to solve the much more difficult problem of constructing invariants such that the invariants being the same for two transformations is a sufficient condition for the transformation to be isomorphic. Finally we apply these...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Almost everywhere:

A property is said to hold almost everywhere (a.e.) if the set on which the property does not hold has measure 0.

Bernoulli shift:

A Bernoulli shift is a stochastic process such that all outputs of the process are independent.

Conditional measure:

For any measure space \( { (X,\mathcal{B},\mu) } \) and σ‑algebra \( { \mathcal{C} \subset \mathcal{B} } \) the conditional measure is a \( { \mathcal{C} } \)‐measurable function g such that \( { \mu(C)=\int_C g \, \mathrm{d}\mu } \) for all \( { C \in \mathcal{C} } \).

Coupling of two measure spaces:

A coupling of two measure spaces \( { (X,\mu,\mathcal{B}) } \) and \( { (Y,\nu,\mathcal{C}) } \) is a measure γ on \( { X \times Y } \) such that \( { \gamma(B \times Y) = \mu(B) } \) for all \( { B \in \mathcal{B} } \) and \( { \gamma(X \times C) = \nu(C) } \) for all \( { C \in \mathcal{C} } \).

Ergodic measure preserving transformation:

A measure preserving transformation is ergodic if the only invariant sets \( { (\mu(A \triangle T^{-1}(A)) = 0) } \) have measure 0 or 1.

Ergodic theorem:

The pointwise ergodic theorem says that for any measure preserving transformation \( { (X,\mathcal{B},\mu) } \) and T and any L 1 function f the time average

$$ \lim_{n \to \infty} \frac{1}{n} \, \sum_{i=1}^{n}f(T^{i}(x)) $$

converges a.e. If the transformation is ergodic then the limit is the space average, \( { \int f \, \mathrm{d}\mu } \) a.e.

Geodesic:

A geodesic on a Riemannian manifold is a distance minimizing path between points.

Horocycle:

A horocycle is a circle in the hyperbolic disk which intersects the boundary of the disk in exactly one point.

Invariant measure:

Likewise a measure μ is said to be invariant with respect to \( { (\mathbf{X},T) } \) provided that \( { \mu(T^{-1}(A))=\mu(A) } \) for all measurable \( { A \in \mathcal{B} } \).

Joining of two measure preserving transformations:

A joining of two measure preserving transformations \( { (\mathbf{X},T) } \) and \( { (\mathbf{Y},S) } \) is a coupling of X and Y which is invariant under \( { T \times S } \).

Markov shift:

A Markov shift is a stochastic process such that the conditional distribution of the future outputs (\( { \{x_n\}_{n \mathchar"313E 0} } \)) of the process conditioned on the last output (x 0) is the same as the distribution conditioned on all of the past outputs of the process (\( { \{x_n\}_{n\leq 0} } \)).

Measure preserving transformation:

A measure preserving transformation consists of a probability space \( { (\mathbf{X},T) } \) and a measurable function \( { T \colon X \to X } \) such that \( { \mu(T^{-1}(A))=\mu(A) } \) for all \( { A \in \mathcal{B} } \).

Measure theoretic entropy:

A numerical invariant of measure preserving transformations that measures the growth in complexity of measurable partitions refined under the iteration of the transformation.

Probability space:

A probability space \( { \mathbf{X}=(X,\mu,\mathcal{B}) } \) is a measure space such that \( { \mu(B)=1 } \).

Rational function, rational map:

A rational function \( { f(z)=g(z)/h(z) } \) is the quotient of two polynomials. The degree of f(z) is the maximum of the degrees of g(z) and h(z). The corresponding rational maps \( { T_f \colon z \to f(z) } \) on the Riemann sphere ℂ are a main object of study in complex dynamics.

Stochastic process:

A stochastic process is a sequence of measurable functions \( { \{x_n\}_{n \in \mathbb{Z}} } \) (or outputs) defined on the same measure space, X. We refer to the value of the functions as outputs.

Bibliography

  1. Ashley J, Marcus B, Tuncel S (1997) The classification of one-sided Markov chains. Ergod Theory Dynam Syst 17(2):269–295

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17:656–660

    Article  ADS  Google Scholar 

  3. Breiman L (1957) The individual ergodic theorem of information theory. Ann Math Statist 28:809–811

    Article  MathSciNet  MATH  Google Scholar 

  4. Den Hollander F, Steif J (1997) Mixing E properties of the generalized \( { T,T^{-1} } \)-process. J Anal Math 72:165–202

    Article  MathSciNet  MATH  Google Scholar 

  5. Einsiedler M, Lindenstrauss E (2003) Rigidity properties of \( { \mathbb{Z}^d } \)-actions on tori and solenoids. Electron Res Announc Amer Math Soc 9:99–110

    Article  MathSciNet  MATH  Google Scholar 

  6. Einsiedler M, Katok A, Lindenstrauss E (2006) Invariant measures and the set of exceptions to Littlewood's conjecture. Ann Math (2) 164(2):513–560

    Article  MathSciNet  Google Scholar 

  7. Feldman J (1976) New K‑automorphisms and a problem of Kakutani. Isr J Math 24(1):16–38

    Article  MATH  Google Scholar 

  8. Freire A, Lopes A, Mañé R (1983) An invariant measure for rational maps. Bol Soc Brasil Mat 14(1):45–62

    Google Scholar 

  9. Friedman NA, Ornstein DS (1970) On isomorphism of weak Bernoulli transformations. Adv Math 5:365–394

    Article  MathSciNet  MATH  Google Scholar 

  10. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallavotti G, Ornstein DS (1974) Billiards and Bernoulli schemes. Comm Math Phys 38:83–101

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Gromov M (2003) On the entropy of holomorphic maps. Enseign Math (2) 49(3–4):217–235

    MathSciNet  Google Scholar 

  13. Halmos PR (1950) Measure theory. D Van Nostrand, New York

    MATH  Google Scholar 

  14. Harvey N, Peres Y. An invariant of finitary codes with finite expected square root coding length. Ergod Theory Dynam Syst, to appear

    Google Scholar 

  15. Heicklen D (1998) Bernoullis are standard when entropy is not an obstruction. Isr J Math 107:141–155

    Article  MathSciNet  MATH  Google Scholar 

  16. Heicklen D, Hoffman C (2002) Rational maps are d‑adic Bernoulli. Ann Math (2) 156(1):103–114

    Article  MathSciNet  Google Scholar 

  17. Hoffman C (1999) A K counterexample machine. Trans Amer Math Soc 351(10):4263–4280

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoffman C (1999) A Markov random field which is K but not Bernoulli. Isr J Math 112:249–269

    Article  MATH  Google Scholar 

  19. Hoffman C (2004) An endomorphism whose square is Bernoulli. Ergod Theory Dynam Syst 24(2):477–494

    Article  MATH  Google Scholar 

  20. Hoffman C (2003) The scenery factor of the \( { [T,T^{-1}] } \) transformation is not loosely Bernoulli. Proc Amer Math Soc 131(12):3731–3735

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoffman C, Rudolph D (2002) Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann Math (2) 156(1):79–101

    Article  MathSciNet  Google Scholar 

  22. Hopf E (1971) Ergodic theory and the geodesic flow on surfaces of constant negative curvature. Bull Amer Math Soc 77:863–877

    Article  MathSciNet  MATH  Google Scholar 

  23. Jong P (2003) On the isomorphism problem of p‑endomorphisms. Ph D thesis, University of Toronto

    Google Scholar 

  24. Kalikow SA (1982) \( { T,T^{-1} } \) transformation is not loosely Bernoulli. Ann Math (2) 115(2):393–409

    Article  MathSciNet  Google Scholar 

  25. Kammeyer JW, Rudolph DJ (2002) Restricted orbit equivalence for actions of discrete amenable groups. Cambridge tracts in mathematics, vol 146. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Katok AB (1975) Time change, monotone equivalence, and standard dynamical systems. Dokl Akad Nauk SSSR 223(4):789–792; in Russian

    MathSciNet  Google Scholar 

  27. Katok A (1980) Smooth non‐Bernoulli K‑automorphisms. Invent Math 61(3):291–299

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Katok A, Spatzier RJ (1996) Invariant measures for higher‐rank hyperbolic abelian actions. Ergod Theory Dynam Syst 16(4):751–778

    Article  MathSciNet  MATH  Google Scholar 

  29. Katznelson Y (1971) Ergodic automorphisms of T n are Bernoulli shifts. Isr J Math 10:186–195

    Article  MathSciNet  MATH  Google Scholar 

  30. Keane M, Smorodinsky M (1979) Bernoulli schemes of the same entropy are finitarily isomorphic. Ann Math (2) 109(2):397–406

    Article  MathSciNet  Google Scholar 

  31. Kolmogorov AN (1958) A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl Akad Nauk SSSR (NS) 119:861–864; in Russian

    MathSciNet  MATH  Google Scholar 

  32. Kolmogorov AN (1959) Entropy per unit time as a metric invariant of automorphisms. Dokl Akad Nauk SSSR 124:754–755; in Russian

    MathSciNet  MATH  Google Scholar 

  33. Krieger W (1970) On entropy and generators of measure‐preserving transformations. Trans Amer Math Soc 149:453–464

    Article  MathSciNet  MATH  Google Scholar 

  34. Ledrappier F (1978) Un champ markovien peut être d'entropie nulle et mélangeant. CR Acad Sci Paris Sér A–B 287(7):A561–A563; in French

    Google Scholar 

  35. Lindenstrauss E (2001) Pointwise theorems for amenable groups. Invent Math 146(2):259–295

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Lyons R (1988) On measures simultaneously 2- and 3‑invariant. Isr J Math 61(2):219–224

    Article  MathSciNet  MATH  Google Scholar 

  37. Mañé R (1983) On the uniqueness of the maximizing measure for rational maps. Bol Soc Brasil Mat 14(1):27–43

    Google Scholar 

  38. Mañé R (1985) On the Bernoulli property for rational maps. Ergod Theory Dynam Syst 5(1):71–88

    Google Scholar 

  39. Meilijson I (1974) Mixing properties of a class of skew‐products. Isr J Math 19:266–270

    Article  MathSciNet  Google Scholar 

  40. Meshalkin LD (1959) A case of isomorphism of Bernoulli schemes. Dokl Akad Nauk SSSR 128:41–44; in Russian

    MathSciNet  MATH  Google Scholar 

  41. Nevo A (1994) Pointwise ergodic theorems for radial averages on simple Lie groups. I. Duke Math J 76(1):113–140

    Article  MathSciNet  MATH  Google Scholar 

  42. Nevo A, Stein EM (1994) A generalization of Birkhoff's pointwise ergodic theorem. Acta Math 173(1):135–154

    Article  MathSciNet  MATH  Google Scholar 

  43. Ornstein DS (1973) A K automorphism with no square root and Pinsker's conjecture. Adv Math 10:89–102

    Article  MathSciNet  MATH  Google Scholar 

  44. Ornstein D (1970) Factors of Bernoulli shifts are Bernoulli shifts. Adv Math 5:349–364

    Article  MathSciNet  Google Scholar 

  45. Ornstein D (1970) Two Bernoulli shifts with infinite entropy are isomorphic. Adv Math 5:339–348

    Article  MathSciNet  Google Scholar 

  46. Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  47. Ornstein DS (1973) An example of a Kolmogorov automorphism that is not a Bernoulli shift. Adv Math 10:49–62

    Article  MathSciNet  MATH  Google Scholar 

  48. Ornstein DS (1973) A mixing transformation for which Pinsker's conjecture fails. Adv Math 10:103–123

    Article  MathSciNet  MATH  Google Scholar 

  49. Ornstein DS, Rudolph DJ, Weiss B (1982) Equivalence of measure preserving transformations. Mem Amer Math Soc 37(262). American Mathematical Society

    Google Scholar 

  50. Ornstein DS, Shields PC (1973) An uncountable family of K‑automorphisms. Adv Math 10:63–88

    Article  MathSciNet  MATH  Google Scholar 

  51. Ornstein D, Weiss B (1983) The Shannon–McMillan–Breiman theorem for a class of amenable groups. Isr J Math 44(1):53–60

    Article  MathSciNet  MATH  Google Scholar 

  52. Ornstein DS, Weiss B (1973) Geodesic flows are Bernoullian. Isr J Math 14:184–198

    Article  MathSciNet  MATH  Google Scholar 

  53. Ornstein DS, Weiss B (1974) Finitely determined implies very weak Bernoulli. Isr J Math 17:94–104

    Article  MathSciNet  MATH  Google Scholar 

  54. Ornstein DS, Weiss B (1987) Entropy and isomorphism theorems for actions of amenable groups. J Anal Math 48:1–141

    Article  MathSciNet  MATH  Google Scholar 

  55. Parry W (1981) Topics in ergodic theory. Cambridge tracts in mathematics, vol 75. Cambridge University Press, Cambridge

    Google Scholar 

  56. Parry W (1969) Entropy and generators in ergodic theory. WA Benjamin, New York

    MATH  Google Scholar 

  57. Petersen K (1989) Ergodic theory. Cambridge studies in advanced mathematics, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  58. Pinsker MS (1960) Dynamical systems with completely positive or zero entropy. Dokl Akad Nauk SSSR 133:1025–1026; in Russian

    MathSciNet  Google Scholar 

  59. Ratner M (1978) Horocycle flows are loosely Bernoulli. Isr J Math 31(2):122–132

    Article  MathSciNet  MATH  Google Scholar 

  60. Ratner M (1982) Rigidity of horocycle flows. Ann Math (2) 115(3):597–614

    Article  MathSciNet  Google Scholar 

  61. Ratner M (1983) Horocycle flows, joinings and rigidity of products. Ann Math (2) 118(2):277–313

    Article  MathSciNet  Google Scholar 

  62. Ratner M (1991) On Raghunathan's measure conjecture. Ann Math (2) 134(3):545–607

    Article  MathSciNet  Google Scholar 

  63. Halmos PR (1960) Lectures on ergodic theory. Chelsea Publishing, New York

    MATH  Google Scholar 

  64. Rudolph DJ (1985) Restricted orbit equivalence. Mem Amer Math Soc 54(323). American Mathematical Society

    Google Scholar 

  65. Rudolph DJ (1979) An example of a measure preserving map with minimal self‐joinings, and applications. J Anal Math 35:97–122

    Article  MathSciNet  MATH  Google Scholar 

  66. Rudolph DJ (1976) Two nonisomorphic K‑automorphisms with isomorphic squares. Isr J Math 23(3–4):274–287

    Article  MathSciNet  MATH  Google Scholar 

  67. Rudolph DJ (1983) An isomorphism theory for Bernoulli free Z‐skew‐compact group actions. Adv Math 47(3):241–257

    Article  MathSciNet  MATH  Google Scholar 

  68. Rudolph DJ (1988) Asymptotically Brownian skew products give non‐loosely Bernoulli K‑automorphisms. Invent Math 91(1):105–128

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Rudolph DJ (1990) \( { \times 2 } \) and \( { \times 3 } \) invariant measures and entropy. Ergod Theory Dynam Syst 10(2):395–406

    Article  MathSciNet  MATH  Google Scholar 

  70. Schmidt K (1984) Invariants for finitary isomorphisms with finite expected code lengths. Invent Math 76(1):33–40

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Shields P (1973) The theory of Bernoulli shifts. Chicago lectures in mathematics. University of Chicago Press, Chicago

    Google Scholar 

  72. Sinaĭ JG (1962) A weak isomorphism of transformations with invariant measure. Dokl Akad Nauk SSSR 147:797–800; in Russian

    Google Scholar 

  73. Sinaĭ J (1959) On the concept of entropy for a dynamic system. Dokl Akad Nauk SSSR 124:768–771; in Russian

    Google Scholar 

  74. Thouvenot J-P (1975) Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Conference on ergodic theory and topological dynamics, Kibbutz, Lavi, 1974. Isr J Math 21(2–3):177–207; in French

    Google Scholar 

  75. Thouvenot J-P (1975) Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Conference on ergodic theory and topological dynamics, Kibbutz Lavi, 1974. Isr J Math 21(2–3):208–214; in French

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Hoffman, C. (2009). Isomorphism Theory in ErgodicTheory . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_297

Download citation

Publish with us

Policies and ethics