Skip to main content

Linear and Non-linear Fokker–Planck Equations

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Let \( \smash{ {\hat X} } \) denote a stochastic process defined on the space O and the time interval \( { [t_0,\infty] } \), where t 0 denotes the initial time of the process. We assume that the process \( \smash{ {\hat X} } \) can be described in terms of a random variable \( \smash{ X \in \Omega } \). More precisely, let X(t) denote the time-dependent evolution of the random variable X for \( \smash{ t \ge t_0 } \). Then, we assume that the process \( \smash{ {\hat X} } \) can be described in terms of the infinitely large set of realizations \( \smash{ X^{(i)}(t) } \) of X(t) with \( \smash{ i=1,2,\dots } \). The realizations \( \smash{ i=1,2,\dots } \) constitute a statistical ensemble. At every time t the probability density P of \( \smash{ {\hat X} } \) can be computed from the realizations \( \smash{ X^{(i)}(t) } \), that is, from the ensemble by means of

$$ P(x,t) = \left\langle{\delta(x-X(t))}\right\rangle \:, $$
(1)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Linear:

Here, linear with respect to a probability density.

Nonlinear:

Here, nonlinear with respect to a probability density.

Markov process:

Process for which it is sufficient to have information about the presence in order to make best predictions about the future. Additional information about the past will not improve the predictions.

Martingale process \( \smash{ {\hat Z} } \) :

Process for which the future mean value \( \smash{ \langle {Z(t+\Delta t)}\rangle } \) of a set of realizations \( \smash{ Z^{(i)} } \) that is passing at presence t through a certain common state z is the state z: \( \smash{ \langle {Z(t+\Delta t)}\rangle_{Z(t)=z} = z } \). Additional information about states \( \smash{ z^{\prime} } \) visited at times \( \smash{ t^{\prime} } \) prior to t is irrelevant.

Bibliography

  1. Abe S, Okamoto Y (2001) Nonextensive statistical mechanics and its applications. Springer, Berlin

    MATH  Google Scholar 

  2. Acebron JA, Bonilla LL, De Leo S, Spigler R (1998) Phys Rev E 57:5287

    ADS  Google Scholar 

  3. Acebron JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) Rev Mod Phys 77:137

    ADS  Google Scholar 

  4. Acebron JA, Spigler R (1998) Phys Rev Lett 81:2229

    ADS  Google Scholar 

  5. Allen EJ, Victory HD Jr (1994) Physica A 209:318

    ADS  Google Scholar 

  6. Aonishi T, Okada M (2002) Phys Rev Lett 88:024102

    ADS  Google Scholar 

  7. Arenas A, Perez Vincente CJ (1994) Phys Rev E 50:949

    ADS  Google Scholar 

  8. Ariaratnam JT, Strogatz SH (2001) Phys Rev Lett 86:4278

    ADS  Google Scholar 

  9. Arnold A, Bonilla LL, Markowich P (1996) Transp Theor Stat Phys 25:733

    MathSciNet  ADS  Google Scholar 

  10. Arnold A, Markowich P, Toscani G (2000) Transp Theor Stat Phys 29:571

    MathSciNet  ADS  MATH  Google Scholar 

  11. Arnold A, Markowich P, Toscani G, Unterreiter A (2001) Commun Part Diff Eq 26:43

    MathSciNet  MATH  Google Scholar 

  12. Aronson DG (1986) In: Dobb A, Eckmann B (eds) Nonlinear diffusion problems – Lecture notes in mathematics, vol 1224. Springer, Berlin, pp 1–46

    Google Scholar 

  13. Balescu R (1975) Equilibrium and nonequilibrium statistical mechanics. Wiley, New York

    MATH  Google Scholar 

  14. Barenblatt GI, Entov VM, Ryzhik VM (1990) Theory of fluid flows through natural rocks. Kluwer Academic Publisher, Dordrecht

    MATH  Google Scholar 

  15. Becker V, Engel A (2007) Phys Rev E 75:031118

    ADS  Google Scholar 

  16. Binney J, Tremaine S (1987) Galatic dynamics. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  17. Birner T, Lippert K, Müller R, Kühnel A, Behn U (2002) Phys Rev E 65:046110

    Google Scholar 

  18. Bödeker HU, Röttger MC, Liehr A, Frank TD, Friedrich R, Purwins HG (2003) Phys Rev E 67:056220

    Google Scholar 

  19. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) Psychol Rev 113:700

    Google Scholar 

  20. Bonilla LL (1987) J Stat Phys 46:659

    MathSciNet  ADS  Google Scholar 

  21. Bonilla LL, Vicente CJP, Rubi JM (1993) Stat J Phys 70:921

    ADS  MATH  Google Scholar 

  22. Borland L (1998) Phys Rev E 57:6634

    ADS  Google Scholar 

  23. Borland L (2002) Phys Rev Lett 89:098701

    ADS  Google Scholar 

  24. Borland L (2008) Anomalous fluctuations in complex systems: plasmas, fluids and financial markets. In: Riccardi C, Roman HE (eds) Special Review Book for Research Singpost, Transworld Research Network, KeralaMadison, 2008, in press

    Google Scholar 

  25. Borland L, Bouchaud JP (2004) Quantitative finance 4:499

    MathSciNet  Google Scholar 

  26. Bychenkov VY, Rozmus W, Tikhonchuk VT (1995) Phys Rev Lett 75:4405

    ADS  Google Scholar 

  27. Carillo JA, Jüngel A, Markowich PA, Toscani G, Unterreiter A (2001) Monatshefte für Mathematik 113:1

    Google Scholar 

  28. Carrillo JA, Rosado J, Salvarani F (2008) Appl Math Letters 21:148

    MathSciNet  MATH  Google Scholar 

  29. Cepa E, Lepingle D (1997) Probab Theory Relat Fields 107:429

    MathSciNet  MATH  Google Scholar 

  30. Chandrasekhar S (1977) Liquid crystals. Cambridge University Press, Cambridge

    Google Scholar 

  31. Chavanis PH (2003) Phys Rev E 68:036108

    ADS  Google Scholar 

  32. Chavanis PH (2004) Physica A 340:57

    MathSciNet  ADS  Google Scholar 

  33. Chavanis PH, Rosier C, Sire C (2002) Phys Rev E 66:036105

    MathSciNet  ADS  Google Scholar 

  34. Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation. World Scientific, New Jersey

    MATH  Google Scholar 

  35. Compte A, Jou D (1996) Phys J Math A Gen 29:4321

    MathSciNet  ADS  MATH  Google Scholar 

  36. Cortines AAG, Riera R (2007) Physica A 377:181

    ADS  Google Scholar 

  37. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  38. Crawford JD (1995) Phys Rev Lett 74:4341

    ADS  Google Scholar 

  39. Curado EMF, Nobre FD (2003) Phys Rev E 67:021107

    MathSciNet  ADS  Google Scholar 

  40. Daido H (1996) Physica D 91:24

    MathSciNet  MATH  Google Scholar 

  41. Daido H (1996) Phys Rev Lett 77:1406

    ADS  Google Scholar 

  42. Daido H (2001) Phys Rev Lett 87:048101

    ADS  Google Scholar 

  43. Daly E, Porporato A (2004) Phys Rev E 70:056303

    ADS  Google Scholar 

  44. Dano S, Hynne F, De Monte S, d'Ovidio F, Sorensen PG, Westerhoff H (2001) Faraday Discuss 120:261

    ADS  Google Scholar 

  45. Dawson DA (1983) J Stat Phys 31:29

    ADS  Google Scholar 

  46. Dawson DA (1993) Lecture notes in mathematics 1541. In: Dawson DA, Maisonneuve B, Spencer J (eds) Springer, Berlin, pp 6–16

    Google Scholar 

  47. Dawson DA, Gärtner J (1989) Large deviations, free energy functional and quasi-potential for a mean field model of interacting diffusions (American Mathematical Society, Providence)

    Google Scholar 

  48. de Gennes P, Prost J (1993) The physics of liquid crystals. Clarendon Press, Oxford

    Google Scholar 

  49. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  50. de Jeu WH (1980) Physical properties of liquid crystalline materials. Gordon and Beach, New York

    Google Scholar 

  51. de los Santos F, Telo da Gamma MM, Munoz MA (2003) Phys Rev E 67:021607

    ADS  Google Scholar 

  52. Desai RC, Zwanzig R (1978) Stat J Phys 19:1

    MathSciNet  ADS  Google Scholar 

  53. Ding X (1994) Adv Appl Prob 26:1022

    MATH  Google Scholar 

  54. Djehiche B, Kaj I (1995) Ann Probab 23:1414

    MathSciNet  MATH  Google Scholar 

  55. Doi M, Edwards SF (1988) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  56. Donoso JM, Salgado JJ (2006) J Phys A 39:12587

    MathSciNet  ADS  MATH  Google Scholar 

  57. Donoso JM, Salgado JJ, Soler M (2005) J Phys A 38:9145

    MathSciNet  ADS  MATH  Google Scholar 

  58. Drazer G, Wio HS, Tsallis C (2000) Phys Rev E 61:1417

    ADS  Google Scholar 

  59. Drozdov AN, Morillo M (1996) Phys Rev E 54:931

    ADS  Google Scholar 

  60. Ebeling W, Sokolov IM (2004) Statistical thermodynamics and stochastic theory of nonequilibrium systems. World Scientific, Singapore

    Google Scholar 

  61. Eckhardt B, Ott E, Strogatz SH, Abrams DM, McRobie A (2007) Phys Rev E 75:021110

    MathSciNet  ADS  Google Scholar 

  62. Epperlein EM, Rickard GJ, Bell AR (1988) Phys Rev Lett 61:2453

    ADS  Google Scholar 

  63. Espanol P, Serrano M, Öttinger HC (1999) Phys Rev Lett 83:4542

    Google Scholar 

  64. Felderhof BU (2003) Physica A 323:88

    MathSciNet  ADS  Google Scholar 

  65. Fialkowiski M, Hess S (2000) Physica A 282:65

    ADS  Google Scholar 

  66. Fokker AD (1914) Annalen der Physik 43:810

    ADS  Google Scholar 

  67. Fontbona J (2003) J Funct Analysis 200:198

    MathSciNet  MATH  Google Scholar 

  68. Frank TD (2001) Phys Lett A 280:91

    ADS  MATH  Google Scholar 

  69. Frank TD (2001) Phys Lett A 290:93

    ADS  MATH  Google Scholar 

  70. Frank TD (2002) Phys Lett A 305:150

    ADS  MATH  Google Scholar 

  71. Frank TD (2002) Physica A 310:397

    MathSciNet  ADS  MATH  Google Scholar 

  72. Frank TD (2003) Phys Lett A 319:173

    MathSciNet  ADS  MATH  Google Scholar 

  73. Frank TD (2003) Physica A 320:204

    MathSciNet  ADS  MATH  Google Scholar 

  74. Frank TD (2004) Eur Phys J B 37:139

    ADS  Google Scholar 

  75. Frank TD (2004) J Phys A 37:3561

    MathSciNet  ADS  MATH  Google Scholar 

  76. Frank TD (2004) Phys Lett A 329:475

    ADS  MATH  Google Scholar 

  77. Frank TD (2004) Physica A 331:391

    MathSciNet  ADS  Google Scholar 

  78. Frank TD (2004) Physica D 195:229

    MathSciNet  ADS  MATH  Google Scholar 

  79. Frank TD (2005) Math Comput Mod 42:1057

    MATH  Google Scholar 

  80. Frank TD (2005) Nonlinear Fokker–Planck equations: Fundamentals and applications. Springer, Berlin

    MATH  Google Scholar 

  81. Frank TD (2005) Phys Rev E 72:041703

    ADS  Google Scholar 

  82. Frank TD (2006) Phys Rev ST-AB 9:084401

    ADS  Google Scholar 

  83. Frank TD (2007) Physica A 382:453

    ADS  Google Scholar 

  84. Frank TD (2008) Physica A 387:773

    MathSciNet  ADS  Google Scholar 

  85. Frank TD, Daffertshofer A (1999) Physica A 272:497

    MathSciNet  ADS  Google Scholar 

  86. Frank TD, Daffertshofer A (2000) Physica A 285:351

    MathSciNet  ADS  MATH  Google Scholar 

  87. Frank TD, Daffertshofer A (2001) Physica A 292:392

    MathSciNet  ADS  MATH  Google Scholar 

  88. Frank TD, Daffertshofer A (2001) Physica A 295:455

    MathSciNet  ADS  MATH  Google Scholar 

  89. Frank TD, Daffertshofer A, Peper CE, Beek PJ, Haken H (2001) Physica D 150:219

    ADS  MATH  Google Scholar 

  90. Frank TD, Friedrich R (2005) Physica A 347:65

    MathSciNet  ADS  Google Scholar 

  91. Friedman A (1969) Partial differential equations. Holt, Rinehart and Winston, Inc., New York

    MATH  Google Scholar 

  92. Friedrich R, Peinke J (1997) Phys Rev Lett 78:863

    ADS  Google Scholar 

  93. Friedrich R, Siegert S, Peinke J, Lück S, Seifert M, Lindemann M, Raethjen J, Deuschl G, Pfister G (2000) Phys Lett A 271:217

    Google Scholar 

  94. Gärtner J (1988) Math Nachr 137:197

    Google Scholar 

  95. Gang H, Haken H, Fagen X (1996) Phys Rev Lett 77:1925

    ADS  Google Scholar 

  96. Garcia-Ojalvo J, Parrondo JMR, Sancho JM, van den Broeck C (1996) Phys Rev E 54:6918

    Google Scholar 

  97. Garcia-Ojalvo J, Sancho JM (1999) Noise in spatially extended systems. Springer, New York

    Google Scholar 

  98. Gardiner CW (1997) Handbook of stochastic methods, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  99. Giada L, Marsili M (2000) Phys Rev E 62:6015

    ADS  Google Scholar 

  100. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability, and fluctuations. Wiley, New York

    MATH  Google Scholar 

  101. Goel NS, Dyn NR (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  102. Graham C (1990) Appl Math Optim 22:75

    MathSciNet  MATH  Google Scholar 

  103. Greven A (2005) Interacting stochastic systems. In: Deuschel J, Greven A (eds) Springer, Berlin, pp 209–246

    Google Scholar 

  104. Gurtin ME, MacCamy RC (1977) Mathematical Biosciences 33:35

    MathSciNet  MATH  Google Scholar 

  105. Hadley P, Beasley MR, Wiesenfeld K (1988) Phys Rev B 38:8712

    ADS  Google Scholar 

  106. Hänggi P, Marchesoni F, Nori F (2005) Annalen der Physik 14:51

    Google Scholar 

  107. Hänggi P, Talkner P, Borkovec M (1990) Rev Mod Phys 62:251

    Google Scholar 

  108. Haken H (2004) Synergetics: Introduction and advanced topics. Springer, Berlin

    Google Scholar 

  109. Han SK, Kurrer C, Kuramoto Y (1995) Phys Rev Lett 75:3190

    ADS  Google Scholar 

  110. Hansel D, Mato G, Meunier C (1993) Europhysics Letters 23:367

    ADS  Google Scholar 

  111. Hansel D, Mato G, Meunier C (1993) Phys Rev E 48:3470

    ADS  Google Scholar 

  112. Hasegawa H (2003) Phys Rev E 67:041903

    MathSciNet  ADS  Google Scholar 

  113. Heifets S (2001) Phys Rev ST-AB 4:044401

    ADS  Google Scholar 

  114. Heifets S (2003) Phys Rev ST-AB 6:080701

    ADS  Google Scholar 

  115. Hess S (1976) Naturforschung Z A 31:1034

    ADS  Google Scholar 

  116. Holden AV (1976) Models of the stochastic activity of neurons. In: Lecture notes in biomathematics, vol 12. Springer, Berlin

    Google Scholar 

  117. Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, Berlin

    MATH  Google Scholar 

  118. Hütter M, Karlin IV, Öttinger HC (2003) Phys Rev E 68:016115

    Google Scholar 

  119. Ichiki A, Ito H, Shiino M (2007) Physica E 40:402

    ADS  Google Scholar 

  120. Ilg P, Karlin IV, Öttinger HC (1999) Phys Rev E 60:5783

    Google Scholar 

  121. Ilg P, Kröger M, Hess S (2005) Phys Rev E 71:051201

    Google Scholar 

  122. Jafari GR, Fazeli SM, Ghasemi F, Allaei SMV, Tabar MRR, Zad AI, Kavei G (2002) Phys Rev Lett 91:226101

    ADS  Google Scholar 

  123. Jelic A, Hütter M, Öttinger HC (2006) Phys Rev E 74:041126

    Google Scholar 

  124. Jourdain B (2000) Methodology and computing in applied probability 2:69

    Google Scholar 

  125. Kadanoff LP (2000) Statistical physics: statics, dynamics and renormalization. World Scientific, Singapore

    Google Scholar 

  126. Kanamaru T, Horita T, Okabe Y (2001) Phys Rev E 64:031908

    ADS  Google Scholar 

  127. Kaniadakis G (2001) Phys Lett A 288:283

    MathSciNet  ADS  MATH  Google Scholar 

  128. Kaniadakis G (2001) Physica A 296:405

    MathSciNet  ADS  MATH  Google Scholar 

  129. Kaniadakis G, Quarati P (1993) Phys Rev E 48:4263

    ADS  Google Scholar 

  130. Kaniadakis G, Quarati P (1994) Phys Rev E 49:5103

    ADS  Google Scholar 

  131. Karlin S, Taylor HM (1975) A first course in stochastic processes. Academic Press, New York

    MATH  Google Scholar 

  132. Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New York

    MATH  Google Scholar 

  133. Kawamura Y (2007) Phys Rev E 76:047201

    MathSciNet  ADS  Google Scholar 

  134. Kawamura Y, Nakao H, Kuramoto Y (2007) Phys Rev E 75:036209

    MathSciNet  ADS  Google Scholar 

  135. Kharchenko DO, Kharchenko VO (2005) Physica A 354:262

    ADS  Google Scholar 

  136. Kim S, Park SH, Ryu CS (1997) Phys Rev Lett 78:1616

    ADS  Google Scholar 

  137. Klimontovich YL (1986) Statistical physics. Harwood Academic Publ, New York

    Google Scholar 

  138. Kloeden PE, Platen E (1992) The numerical solution of stochastic differential equations. Springer, Berlin

    Google Scholar 

  139. Kometani K, Shimizu H (1975) J Stat Phys 13:473

    MathSciNet  ADS  Google Scholar 

  140. Kondepudi D, Prigogine I (1998) Modern thermodynamics. Wiley, New York

    MATH  Google Scholar 

  141. Kostur M, Luczka J, Schimansky-Geier L (2002) Phys Rev E 65:051115

    Google Scholar 

  142. Kozyreff G, Vladimirov AG, Mandel P (2000) Phys Rev Lett 85:3809

    ADS  Google Scholar 

  143. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    MATH  Google Scholar 

  144. Lancellotti C, Kiessling M (2001) Astrophys J 549:L93

    ADS  Google Scholar 

  145. Larson RG, Öttinger HC (1991) Macromolecules 24:6270

    Google Scholar 

  146. Li JH, Huang ZQ, Xing DY (1998) Phys Rev E 58:2838

    ADS  Google Scholar 

  147. Li JH, Hänggi P (2001) Phys Rev E 64:011106

    Google Scholar 

  148. Lo CF (2005) Phys Lett A 336:141

    MathSciNet  ADS  MATH  Google Scholar 

  149. MacDonald WM, Rosenbluth MN, Chuck W (1957) Phys Rev 107:350

    MathSciNet  ADS  MATH  Google Scholar 

  150. Maier W, Saupe A (1958) Z Naturforschung A 13:564

    ADS  Google Scholar 

  151. Marsili M, Bray AJ (1996) Phys Rev Lett 76:2750

    ADS  Google Scholar 

  152. McCauley JL, Gunaratne GH, Bassler KE (2006) Physica A 382:445

    MathSciNet  Google Scholar 

  153. McKean HP Jr (1969) Propagation of Chaos for a class of nonlinear parabolic equations. In: Aziz AK (ed) Lectures in differential equations, vol II. Van Nostrand Reinhold Company, New York, pp 177–193

    Google Scholar 

  154. Meleard S (1996) Asymptotic behavior of some interacting particle systems: McKean-Vlasov and Boltzmann models. In: Graham C, Kurtz TG, Meleard S, Potter PE, Pulvirenti M, Talay D (eds) Probabilistic models for nonlinear partial differential equations. Springer, Berlin, pp 42–95

    Google Scholar 

  155. Meleard S, Coppoletta SR (1987) Stoch Process Appl 26:317

    MATH  Google Scholar 

  156. Michael F, Johnson MD (2003) Physica A 320:525

    MathSciNet  ADS  MATH  Google Scholar 

  157. Mikhailov AS, Zanette DH (1999) Phys Rev E 60:4571

    ADS  Google Scholar 

  158. Morillo M, Gomez-Ordonez J, Casado JM (1995) Phys Rev E 52:316

    Google Scholar 

  159. Müller R, Lippert K, Kühnel A, Behn U (1997) Phys Rev E 56:2658

    Google Scholar 

  160. Nicholson DR (1983) Introduction to plasma theory. Wiley, New York

    Google Scholar 

  161. Nobre FD, Curado EMF, Rowlands G (2004) Physica A 334:109

    MathSciNet  ADS  Google Scholar 

  162. Oelschläger K (1989) Probab Th Rel Fields 82:565

    Google Scholar 

  163. Öttinger HC (1996) Stochastic processes in polymeric fluids. Springer, Berlin

    Google Scholar 

  164. Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New Jersey

    Google Scholar 

  165. Öttinger HC (2007) Phys Rev Lett 99:130602

    Google Scholar 

  166. Öttinger HC, Grmela M (1997) Phys Rev E 56:6633

    Google Scholar 

  167. Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, Berlin

    Google Scholar 

  168. Overbeck L (1996) Ann Probab 24(2):743

    MathSciNet  Google Scholar 

  169. Park K, Lai YC, Liu Z, Nachman A (2004) Phys Lett A 326:391

    MathSciNet  ADS  MATH  Google Scholar 

  170. Park SH, Kim S (1996) Phys Rev E 53:3425

    ADS  Google Scholar 

  171. Patanarapeelert K, Frank TD, Friedrich R, Beek PJ, Tang IM (2006) Phys Lett A 360:190

    ADS  Google Scholar 

  172. Paul W, Baschnagel J (1999) Stochastic processes: from physics to finance. Springer, Berlin

    MATH  Google Scholar 

  173. Peletier LA (1981) In: Amann H, Bazley N, Kirchgässner K (eds)(1981) Applications of nonlinear analysis in the physical science. Pitman Advanced Publishing Program, Boston, pp 229–241

    Google Scholar 

  174. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Google Scholar 

  175. Pilipenko AY (2005) Urkainian Math J 57:1507

    MathSciNet  Google Scholar 

  176. Planck M (1917) Sitzungsber. Preuss Akad Wissens, Berlin, p 324

    Google Scholar 

  177. Plastino AR, Plastino A (1995) Physica A 222:347

    MathSciNet  ADS  Google Scholar 

  178. Quinn DA, Rand RH, Strogatz SH (2007) Phys Rev E 75:036218

    MathSciNet  ADS  Google Scholar 

  179. Ratcliff R, Gomez P, McKoon G (2004) Psychol Rev 111:159

    Google Scholar 

  180. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill Book Company, New York

    Google Scholar 

  181. Reimann P (2002) Phys Rep 361:57

    MathSciNet  ADS  MATH  Google Scholar 

  182. Reimann P, Kawai R, Van den Broeck C, Hänggi P (1999) Europhysics Letters 45:545

    Google Scholar 

  183. Reimann P, Van den Broeck C, Kawai R (1999) Phys Rev E 60:6402

    ADS  Google Scholar 

  184. Risken H (1989) The Fokker–Planck equation – Methods of solution and applications. Springer, Berlin

    MATH  Google Scholar 

  185. Rogers LCG, Shi Z (1993) Probab Theroy Relat Fields 95:555

    MathSciNet  MATH  Google Scholar 

  186. Rosenblum MG, Pikovsky AS (2004) Phys Rev Lett 92:114102

    ADS  Google Scholar 

  187. Rosenbluth M, MacDonald WM, Judd DL (1957) Phys Rev 107:1

    MathSciNet  ADS  MATH  Google Scholar 

  188. Sakaguchi H (1988) Prog Theor Phys 79:39

    MathSciNet  ADS  Google Scholar 

  189. Savel'ev S, Marchesoni F, Nori F (2003) Phys Rev Lett 91:010601

    ADS  Google Scholar 

  190. Scarfone MA, Wada T (2007) Physica A 384:305

    MathSciNet  ADS  Google Scholar 

  191. Schuster HG, Wagner P (1990) Biol Cybern 64:77

    MATH  Google Scholar 

  192. Schwämmle V, Nobre FD, Curado E (2007) Phys Rev E 76:041123

    Google Scholar 

  193. Schweitzer F (2003) Brownian agents and active particles. Springer, Berlin

    MATH  Google Scholar 

  194. Schwämmle V, Gonzahles MC, Moreira AA, Andrade JS, Hermann HJ (2007) Phys Rev E 75:066108

    Google Scholar 

  195. Shiino M (1985) Phys Lett A 112:302

    MathSciNet  ADS  Google Scholar 

  196. Shiino M (1987) Phys Rev A 36:2393

    ADS  Google Scholar 

  197. Shiino M (2001) J Math Phys 42:2540

    MathSciNet  ADS  MATH  Google Scholar 

  198. Shiino M (2002) J Math Phys 43:2654

    MathSciNet  ADS  MATH  Google Scholar 

  199. Shiino M (2002) J Phys Soc 40:1037

    Google Scholar 

  200. Shiino M (2003) Phys Rev E 67:056118

    ADS  Google Scholar 

  201. Shimizu H (1974) Prog Theor Phys 52:329

    ADS  Google Scholar 

  202. Shimizu H, Yamada T (1972) Prog Theor Phys 47:350

    ADS  Google Scholar 

  203. Shobuda Y, Hirata K (2001) Phys Rev E 64:067501

    ADS  Google Scholar 

  204. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  205. Soler M, Martinez FC, Donoso JM (1992) Stat J Phys 69:813

    ADS  MATH  Google Scholar 

  206. Sopik J, Sire C, Chavanis PH (2006) Phys Rev E 74:011112

    MathSciNet  ADS  Google Scholar 

  207. Strogatz SH (2000) Physica D 143:1

    MathSciNet  ADS  MATH  Google Scholar 

  208. Strogatz SH, Abrams D, McRobie A, Eckhardt B, Ott E (2005) Nature 438:43

    ADS  Google Scholar 

  209. Strogatz SH, Mirollo RE (1991) Stat J Phys 63:613

    MathSciNet  ADS  Google Scholar 

  210. Strogatz SH, Morillo RE, Matthews PC (1992) Phys Rev Lett 68:2730

    MathSciNet  ADS  MATH  Google Scholar 

  211. Stupakov GV, Breizman BN, Pekker MS (1997) Phys Rev E 55:5976

    ADS  Google Scholar 

  212. Sura P, Barsugli J (2002) Phys Lett A 305:304

    ADS  MATH  Google Scholar 

  213. Takai M, Akiyama H, Takeda S (1981) J Phys Soc Japan 50:1716

    ADS  Google Scholar 

  214. Takatsuji M (1975) Biol Cybern 17:207

    Google Scholar 

  215. Tass PA (1999) Phase resetting in medicine and biology – Stochastic modelling and data analysis. Springer, Berlin

    MATH  Google Scholar 

  216. Tass PA (2001) Europhysics Letters 55:171

    ADS  Google Scholar 

  217. Tass PA (2003) Biol Cybern 89:81

    MATH  Google Scholar 

  218. Tass PA (2006) Biol Cybern 94:58

    MathSciNet  MATH  Google Scholar 

  219. Tsallis C (1988) Stat J Phys 52:479

    MathSciNet  ADS  MATH  Google Scholar 

  220. Tsallis C (1997) Phys World 10(7):42

    Google Scholar 

  221. Tsallis C (2004) Physica D 193:3

    MathSciNet  ADS  MATH  Google Scholar 

  222. Tsallis C, Bukman DJ (1996) Phys Rev E 54:R2197

    ADS  Google Scholar 

  223. Tsekov R (1995) J Phys A Math Gen 28:L557

    MathSciNet  ADS  Google Scholar 

  224. Tsekov R (2001) Int J Mol Sci 2:66

    Google Scholar 

  225. van den Broeck C, Parrondo JMR, Armero J, Hernandez-Machado A (1994) Phys Rev E 49:2639

    Google Scholar 

  226. van den Broeck C, Parrondo JMR, Toral R (1994) Phys Rev Lett 73:3395

    ADS  Google Scholar 

  227. van den Broeck C, Parrondo JMR, Toral R, Kawai R (1997) Phys Rev E 55:4084

    ADS  Google Scholar 

  228. van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

    MATH  Google Scholar 

  229. Vellekoop M, Nieuwenhuis H (2007) Quantitative finance 7:563

    MathSciNet  MATH  Google Scholar 

  230. Venturini M, Warnock R (2002) Phys Rev Lett 89:224802

    ADS  Google Scholar 

  231. Waechter M, Riess F, Schimmel T, Wendt U, Peinke J (2004) Eur Phys J B 41:259

    ADS  Google Scholar 

  232. Wehner MF, Wolfer WG (1987) Phys Rev A 35:1795

    ADS  Google Scholar 

  233. Wiesenfeld K, Colet P, Strogatz SH (1996) Phys Rev Lett 76:404

    ADS  Google Scholar 

  234. Winfree AT (1967) Theor J Biol 16:15

    Google Scholar 

  235. Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  236. Yamaguchi Y, Shimizu H (1984) Physica D 11:213

    MathSciNet  ADS  Google Scholar 

  237. Yamana M, Shiino M, Yoshioka M (1999) Phys J A Math Gen 32:3525

    ADS  MATH  Google Scholar 

  238. Yoshioka M, Shiino M (2000) Phys Rev E 61:4732

    ADS  Google Scholar 

  239. Zaikin AA, Garcia-Ojalvo J, Schimansky-Geier L, Kurths J (2002) Phys Rev Lett 88:010601

    Google Scholar 

  240. Zhai Y, Kiss IZ, Daido H, Hudson JL (2005) Physica D 205:57

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Frank, T.D. (2009). Linear and Non-linear Fokker–Planck Equations. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_311

Download citation

Publish with us

Policies and ethics