Skip to main content

Multiple Mobile Robot Teams, Path Planning and Motion Coordination in

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Multi-robot path planning and motion coordinationaddresses the problem of how teams of autonomous mobile robotscan share the same workspace while avoiding interference with each other, and/or while achieving group motion objectives. Nearly all applications ofmultiple autonomous mobile robots must address this issue of motion coordination, either explicitly or implicitly. Multi-robot path planning and teaminghas been extensively studied since the 1980s. While many techniques have been developed to address this challenge, the general centralized multi-robotpath planning problem is known to be intractable, meaning that optimal solutions cannot be found in polynomial time. Thus, alternative techniques thatdecouple aspects of the motion planning and coordination problem have been proposed that trade off optimality for efficiency. A wide variety ofapplications can benefit from teams of robots that can coordinate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Autonomous robot:

An autonomous robot is a robot that can perform tasks in unstructured environments with minimal human guidance.

Planned path:

A planned path is a pre-determined, obstacle-free, trajectory that a robot can follow to reach its goal position from its starting position.

Complete path planner:

A complete path planner is an algorithm that is guaranteed to find a path, if one exists.

Deadlocked path planning:

A deadlock is a situation in path planning in which a solution cannot be found, even though one exists. Typically, this is caused by robots blocking each other’s paths, and the planner being unable to find a solution in which robots move out of each other’s way.

Bibliography

Primary Literature

  1. Alami R, Robert F, Ingrand F, Suzuki S (1995) Multi-robot cooperation through incremental plan-merging. In: Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Aichi, 21–27 May 1995, pp 2573–2578

    Google Scholar 

  2. Alami R, Fleury S, Herrb M, Ingrand F, Robert F (1998) Multi-robot cooperation in the MARTHA project. IEEE Robot Autom Mag 5(1):36–47

    Google Scholar 

  3. Antonelli G, Chiaverini S (2006) Kinematic control of platoons of autonomous vehicles. IEEE Trans Robot 22(6):1285–1292

    Google Scholar 

  4. Arkin (1992) Cooperation without communication: multiagent schema-based robot navigation. J Robot Syst 9:351–364

    Google Scholar 

  5. Asama H, Ozaki K, Itakura H, Matsumoto A, Ishida Y, Endo I (1991) Collision avoidance among multiple mobile robots based on rules and communication. In: Proceedings of IEEE/RJS International Conference on Intelligent Robots and Systems, Osaka, 3–5 Nov 1991

    Google Scholar 

  6. Azarm K, Schmidt G (1997) Conflict-free motion of multiple mobile robots based on decentralized motion planning and negotiation. In: Proceedings of IEEE International Conference on Robotics and Automation, 20–25 April 1997, pp 3526–3533

    Google Scholar 

  7. Balch T (1999) The impact of diversity on performance in robot foraging. In: Proceedings of the Third Annual Conference on Autonomous Agents, 1–5 May 1999. ACM Press, Seattle, pp 92–99

    Google Scholar 

  8. Balch T, Arkin R (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Robot Autom 14(6):926–939

    Google Scholar 

  9. Barraquand J, Latombe JC (1991) Robot motion planning: A distributed representation approach. Int J Robot Res 20(6):628–649

    Google Scholar 

  10. Barraquand J, Langlois B, Latombe JC (1992) Numerical potential field techniques for robot motion planning. IEEE Trans Syst Man Cybern 22:224–241

    MathSciNet  Google Scholar 

  11. Barraquand J, Langlois B, Latombe JC (1997) Numerical potential field techniques for robot path planning. Int J Robot Res 16(6):759–774

    Google Scholar 

  12. Beard RW, McLain TW, Goodrich M (2002) Coordinated target assignment and intercept for unmanned air vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation, 11–15 May 2002. IEEE, Washington DC

    Google Scholar 

  13. Beckers R, Holland O, Deneubourg J (1994) From local actions to global tasks: Stigmergy and collective robotics. In: Brooks R, Maes P (eds) Proceedings of the 4th International Workshop on Synthesis and Simulation of Living Systems. MIT Press, Cambridge, pp 181–189

    Google Scholar 

  14. Belta C, Kumar V (2004) Abstraction and control for groups of robots. IEEE Trans Robot 20(5):865–875

    Google Scholar 

  15. Bennewitz M, Burgard W, Thrun S (2001) Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings of IEEE International Conference on Robotics and Automation, Seoul, 21–26 May 2001, pp 271–276

    Google Scholar 

  16. Bennewitz M, Burgard W, Thrun S (2002) Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobiel robots. Robot Auton Syst 41(2):89–99

    Google Scholar 

  17. Bien Z, Lee J (1992) A minimum-time trajectory planning method for two robots. IEEE Trans Robot Autom 8:414–418

    Google Scholar 

  18. Bobrow JE (1988) Optimal robot path planning using the minimum-time criterion. IEEE Trans Robot Autom 4(4):443–450

    Google Scholar 

  19. Browning B, Bruce J, Bowling M, Veloso M (2005) STP: Skills, tactics and plays for multi-robot control in adversarial environments. IEEE J Control Syst Eng 219:33–52

    Google Scholar 

  20. Buckley SJ (1989) Fast motion planning for multiple moving robots. In: Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, 14–19 May 1989, pp 322–326

    Google Scholar 

  21. Butler ZJ, Rizzi AA, Hollis RL (2000) Cooperative coverage of rectilinear environments. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, 24–28 April 2000. IEEE

    Google Scholar 

  22. Carpin S, Pagello E (2001) A distributed algorithm for multi-robot motion planning. In: Proceedings of the Fourth European Workshop on Advanced Mobile Robotics, Lund 2001

    Google Scholar 

  23. Chang C, Chung MJ, Lee BH (1994) Collision avoidance of two general robot manipulators by minimum delay time. IEEE Trans Robot Autom 24(3):517–522

    Google Scholar 

  24. Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

    Google Scholar 

  25. Chun L, Zheng Z, Chang W (1999) A decentralized approach to the conflict-free motion planning for multiple mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, Detroit, 10–15 May 1999, pp 1544–1549

    Google Scholar 

  26. Clark CM, Rock SM, Latombe JC (2003) Motion planning for multiple mobile robot systems using dynamic networks. In: Proceedings of IEEE International Conference on Robotics and Automation, Taipai, 14–19 Sept 2003, pp 4222–4227

    Google Scholar 

  27. Dimarogonas DV, Loizou SG, Kyriakopoulos KJ, Zavlanos MM (2006) A feedback stabilization adn collision avoidance scheme for multiple independent non-point agents. Automatica 42(2):229–243

    MathSciNet  MATH  Google Scholar 

  28. Drogoul A, Ferber J (1992) From Tom Thumb to the Dockers: Some experiments with foraging robots. In: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Honolulu, 2–16 Dec 1992, pp 451–459

    Google Scholar 

  29. Erdmann M, Lozano-Perez T (1987) On multiple moving objects. Algorithmica 2:477–521

    MathSciNet  MATH  Google Scholar 

  30. Everett HR, Laird RT, Carroll DM, Gilbreath GA, Heath-Pastore TA, Inderieden RS, Tran T, Grant KJ, Jaffee DM (2000) Multiple Resource Host Architecture (MRHA) for the Mobile Detection Assessment Response System (MDARS). In: SPAWAR Systems Technical Document 3026, Revision A. San Diego

    Google Scholar 

  31. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9)

    MathSciNet  Google Scholar 

  32. Ferrari C, Pagello E, Ota J, Arai T (1998) Multirobot motion coordination in space and time. Robot Auton Syst 25:219–229

    Google Scholar 

  33. Fontan M, Mataric M (1998) Territorial multi-robot task division. IEEE Trans Robot Autom 15(5):815–822

    Google Scholar 

  34. Fujimori A, Teramoto M, Nikiforuk P, Gupta M (2000) Cooperative collision avoidance between multiple mobile robots. J Robot Syst 17(7):347–363

    MATH  Google Scholar 

  35. Fujimura K (1991) Motion planning in dynamic environment. Computer Science Workbench. Springer, Tokyo

    Google Scholar 

  36. Gage D (1993) Randomized search strategies with imperfect sensors. In: Proceedings of SPIE Mobile Robots VIII. SPIE, Boston, pp 270–279

    Google Scholar 

  37. Gazi V (2005) Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans Robot 21(6):1208–1214

    Google Scholar 

  38. Ge SS, Fua CH (2005) Queues and artificial potential trenches for multirobot formations. IEEE Trans Robot 21(4):646–656

    Google Scholar 

  39. Ghrist R, O’Kane JM, LaValle SM (2004) Pareto optimal coordination on roadmaps. In: Proceedings of the Workshop on Algorithmic Foundations of Robotics, Utrecht, 11–13 May 2004, pp 185–200

    Google Scholar 

  40. Gonzalez-Banos HH, Hsu D, Latombe JC (2006) Chapter: Autonomous mobile robots: Sensing, control, decision-making, and applications. In: Motion Planning: Recent Developments. CRC, New York

    Google Scholar 

  41. Griswold NC, Eem J (1990) Control for mobile robots in the presence of moving objects. IEEE Trans Robot Autom 6(2):263–268

    Google Scholar 

  42. Grossman DD (1988) Traffic control of multiple robot vehicles. IEEE Trans Robot Autom 5(5):491–497

    MathSciNet  Google Scholar 

  43. Guo Y, Parker LE (2002) A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, 11–15 May 2002

    Google Scholar 

  44. Guo Y, Parker LE, Madhavan R (2004) Towards collaborative robots for infrastructure security applications. In: Proceedings of International Symposium on Collaborative Technologies and Systems, San Diego, 18–23 Jan 2004, pp 235–240

    Google Scholar 

  45. Hart EE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern SSC-4(2):100–107

    Google Scholar 

  46. Hazard C, Wurman PR, D’Andrea R (2006) Alphabet soup: A testbed for studying resource allocation in multi-vehicle systems. In: Proceedings of AAAI Workshop on Auction Mechanisms for Robot Coordination, Boston, 16–20 July 2006, pp 23–30

    Google Scholar 

  47. Hopcroft JE, Schwartz JT, Sharir M (1984) On the complexity of motion planning for multiple independent objects; PSPACE-Hardness of the Warehouseman’s Problem. Int J Robot Res 3(4):76–88

    Google Scholar 

  48. Hwang Y, Ahuja N (1992) Gross motion planning – a survey. ACM Comput Surv 24(3):219–291

    Google Scholar 

  49. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    MathSciNet  Google Scholar 

  50. Jennings JS, Whelan G, Evans WF (1997) Cooperative search and rescue with a team of mobile robots. In: Proceedings of the 8th International Conference on Advanced Robotics, Monterey, 7–9 July 1992, pp 193–200

    Google Scholar 

  51. Jung B, Sukhatme G (2002) Tracking targets using multiple mobile robots: The effect of environment occlusion. Auton Robot 13(3):191–205

    MATH  Google Scholar 

  52. Kant K, Zucker SW (1986) Toward efficient trajectory planning: the path-velocity decomposition. Int J Robot Res 5(3):72–89

    Google Scholar 

  53. Kato S, Nishiyama S, Takeno J (1992) Coordinating mobile robots by applying traffic rules. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, 7–17 July 1992, pp 1535–1541

    Google Scholar 

  54. Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Google Scholar 

  55. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    MathSciNet  Google Scholar 

  56. Kloder S, Hutchinson S (2006) Path planning for permutation-invariant multirobot formations. IEEE Trans Robot 22(4):650–665

    Google Scholar 

  57. Kolling A, Carpin S (2006) Multirobot cooperation for surveillance of multiple moving targets – a new behavioral approach. In: Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, 15–19 May 2006. IEEE, pp 1311–1316

    Google Scholar 

  58. Latombe JC (1991) Robot motion planning. Kluwer Academic, Boston

    Google Scholar 

  59. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge, New York

    MATH  Google Scholar 

  60. LaValle SM, Hutchinson SA (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans Robot Autom 14:912–925

    Google Scholar 

  61. LaValle SM, Gonzalez-Banos HH, Becker C, Latombe JC (1997) Motion strategies for maintaining visibility of a moving target. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, 20–25 April 1997. IEEE, pp 731–736

    Google Scholar 

  62. Lee BH, Lee CS (1987) Collision-free motion planning of two robots. IEEE Trans Syst Man Cybern 17(1):21–32

    Google Scholar 

  63. Lee BJ, Lee SO, Park GT (1999) Trajectory generation and motion tracking for the robot soccer game. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, 17–21 Oct 1999, pp 1149–1154

    Google Scholar 

  64. Lee J, Bien Z (1990) Collision-free trajectory control for multiple robots based on neural optimization network. Robotica 8:185–194

    Google Scholar 

  65. Lin CF, Tsai WH (1991) Motion planning for multiple robots with multi-mode operations via disjunctive graphs. Robotica 9:393–408

    Google Scholar 

  66. Luke S, Sullivan K, Panait L, Balan G (2005) Tunably decentralized algorithms for cooperative target observation. In: Proceedings of the fourth international joint conference on Autonomous Agents and Multiagent Systems, Utrecht, 25–29 July 2005. ACM Press, pp 911–917

    Google Scholar 

  67. Lumelsky VJ, Harinarayan KR (1997) Decentralized motion planning for multiple mobile robots: The cocktail party model. Auton Robot 4(1):121–135

    Google Scholar 

  68. Marshall JA, Broucke ME, Francis BR (2004) Formations of vehicles in cyclic pursuit. IEEE Trans Autom Control 49(11):1963–1974

    MathSciNet  Google Scholar 

  69. Mataric M (1997) Behavior-based control: Examples from navigation, learning, and group behavior. J Exp Theor Artif Intell 19(2–3):323–336

    Google Scholar 

  70. Mataric MJ (1992) Designing emergent behaviors: From local interactions to collective intelligence. In: Meyer J, Roitblat H, Wilson S (eds) Proceedings of the 2nd international conference on simulation of adaptive behavior. MIT Press, Honolulu, pp 432–441

    Google Scholar 

  71. Mourikis AI, Roumeliotis SI (2006) Optimal sensor scheduling for resource-constrained localization of mobile robot formations. IEEE Trans Robot 22(5):917–931

    Google Scholar 

  72. Mourikis AI, Roumeliotis SI (2006) Performance analysis of multirobot cooperative localization. IEEE Trans Robot 22(4):666–681

    Google Scholar 

  73. Nilsson N (1982) Principles of artificial intelligence. Springer, Berlin

    MATH  Google Scholar 

  74. O’Donnell PA, Lozano-Perez T (1989) Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, 14–19 May 1989, pp 484–489

    Google Scholar 

  75. O’Dunlaing C, Yap CK (1982) A retraction method for planning the motion of a disc. J Algorithm 6:104–111

    Google Scholar 

  76. Pallottino L, Scordio VG, Bicchi A, Frazzoli E (2007) Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Trans Robot 23(6):1170–1183

    Google Scholar 

  77. Pan TJ, Luo RC (1990) Motion panning for mobile robots in a dynamic environment. In: Proceedings of IEEE International Conference on Robotics and Automation, 13–18 May 1990, pp 578–583

    Google Scholar 

  78. Park S, Lee B (2006) A new analytical representation to robot path generation with collision avoidance through the use of the collision map. Int J Control Autom Syst 4(1):77–86

    Google Scholar 

  79. Parker LE (1988) A robot navigation algorithm for moving obstacles. Master’s thesis, The University of Tennessee

    Google Scholar 

  80. Parker LE (1993) Designing control laws for cooperative agent teams. In: Proceedings of the IEEE Robotics and Automation Conference, Atlanta, 2–6 May 1993. IEEE, pp 582–587

    Google Scholar 

  81. Parker LE (1998) Alliance: An architecture for fault-tolerant multi-robot cooperation. IEEE Trans Robot Autom 14(2):220–240

    Google Scholar 

  82. Parker LE (1999) Cooperative robotics for multi-target observation. Intell Autom Soft Comput 5(1):5–19

    Google Scholar 

  83. Parker LE (2008) Chapter 40: Multiple mobile robot systems. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, New York

    Google Scholar 

  84. Parker LE, Draper J (1999) Robotics applications in maintenance and repair. In: Nof S (ed) Handbook of industrial robotics, 2nd edn. Wiley, New York, pp 1023–1036

    Google Scholar 

  85. Parsons D, Canny J (1990) A motion planner for multiple mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, 13–18 May 1990, pp 8–13

    Google Scholar 

  86. Passino K (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    MathSciNet  Google Scholar 

  87. Peasgood M, Clark C, McPhee J (2008) A complete and scalable strategy for coordinating multiple robots within roadmaps. IEEE Trans Robot, 24(2):283–292

    Google Scholar 

  88. Peng J, Akella S (2005) Coordinating multiple robots with kinodynamic constraints along specified paths. Int J Robot Res 24(4):295–310

    Google Scholar 

  89. Pilarski T, Happold M, Pangels H, Ollis M, Fitzpatrick K, Stentz A (1999) The demeter system for automated harvesting. In: Proceedings of the 8th International Topical Meeting on Robotics and Remote Systems, Pittsburgh, 25–29 April 1999

    Google Scholar 

  90. Preparata F, Shamos M (1985) Computational geometry. Springer, New York

    Google Scholar 

  91. Reynolds CW (1987) Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Comput Graph 21:25–34

    Google Scholar 

  92. Rude M (1997) Collision avoidance by using space-time representations of motion processes. Auton Robot 4:101–119

    Google Scholar 

  93. Ryan MRK (2007) Graph decomposition for efficient multi-robot path planning. In: Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, 6–12 Jan 2007, pp 2003–2008

    Google Scholar 

  94. Rybski P, Stoeter S, Wyman C, Gini M (1997) A cooperative multi-robot approach to the mapping and exploration of mars. In: Proceedings of AAAI/IAAI-97. AAAI, Providence

    Google Scholar 

  95. Sanchez G, Latombe JC (2002) On delaying collision checking in PRM planning: application to multi-robot coordination. Int J Robot Res 21(1):5–26

    Google Scholar 

  96. Schwartz JT, Sharir M (1983) On the ‘piano movers’ problem: Iii. coordinating the motion of several independent bodies: The special case of circular bodies moving amidst polygonal obstacles. Int J Robot Res 2(3):46–75

    MathSciNet  Google Scholar 

  97. Schwartz JT, Sharir M (1988) A survey of motion planning and related geometric algorithms. Artif Intell J 37:157–169

    MathSciNet  MATH  Google Scholar 

  98. Shaffer G, Stentz A (1992) A robotic system for underground coal mining. In: Proceedings of IEEE International Conference on Robotics and Automation, 12–14 May 1992, pp 633–638

    Google Scholar 

  99. Shan L, Hasegawa T (1996) Space reasoning from action observation for motion planning of multiple robots: mutual collision avoidance in a narrow passage. J Robot Soc Jpn 14:1003–1009

    Google Scholar 

  100. Sharir M (2004) Algorithmic motion planning. In: Goodman JE, O’Rourke J (eds) Handbook of discrete and computational geometry, 2nd edn. Chapman Hall/CRC, New York

    Google Scholar 

  101. Shiller Z, Lu HH (1990) Robust computation of path constrained time optimal motions. In: Proceedings of IEEE International Conference on Robotics and Automation, 13–18 May 1990, pp 144–149

    Google Scholar 

  102. Simeon T, Leroy S, Laumond J (2002) Path coordination for multiple mobile robots: a resolution-complete algorithm. IEEE Trans Robot Autom 24(1):42–49

    Google Scholar 

  103. Simmons R, Singh S, Hershberger D, Ramos J, Smith T (2000) First results in the coordination of heterogeneous robots for large-scale assembly. In: Proc. of the ISER Seventh International Symposium on Experimental Robotics, Honolulu, 10–13 Dec 2000. Springer

    Google Scholar 

  104. Stone P, Veloso M (1999) Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork. Artif Intell 110(2):241–273

    MATH  Google Scholar 

  105. Stroupe A, Okon A, Robinson M, Huntsberger T, Aghazarian H, Baumgartner E (2006) Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance. Auton Robot 20(2):113–123

    Google Scholar 

  106. Sugawara K, Sano M (2002) Cooperative behavior of interacting simple robots in a clockface arranged foraging field. In: Asama H, Arai T, Fukuda T, Hasegawa T (eds) Distributed Autonomous Robotic Systems. Springer, Fukjoka, pp 331–339

    Google Scholar 

  107. Sugihara K, Suzuki I (1996) Distributed algorithms for formation of goemetric patterns with many mobile robots. J Robot Syst 13(3):127–139

    MATH  Google Scholar 

  108. Sun S, Lee D, Sim K (2001) Artificial immune-based swarm behaviors of distributed autonomous robotic systems. In: Proceedings of IEEE International Conference on Robotics and Automation Seoul 21–26 May 2001. IEEE, pp 3993–3998

    Google Scholar 

  109. Svestka P, Overmars M (1998) Coordinated path planning for multiple robots. Robot Auton Syst 23:125–152

    Google Scholar 

  110. Tabuada P, Pappas G, Lima P (2005) Motion feasibility of multi-agent formations. IEEE Trans Robot 21(3):387–392

    Google Scholar 

  111. Tang Z, Ozguner U (2005) Motion planning for multitarget surveillance with mobile sensor agents. IEEE Trans Robot 21(5):898–908

    Google Scholar 

  112. Thorpe C, Jochem T, Pomerleau D (1997) The 1997 automated highway free agent demonstration. In: Proceedings of IEEE Conference on Intelligent Transportation System, Boston, 9–12 Nov 1997, pp 496–501

    Google Scholar 

  113. Topaz CM, Bertozzi AL (2004) Swarming patterns in two-dimensional kinematic model for biological groups. SIAM J Appl Math 65(1):152–174

    MathSciNet  MATH  Google Scholar 

  114. Tournassoud P (1986) A strategy for obstacle avoidance and its application to multi-robot systems. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, pp 1224–1229

    Google Scholar 

  115. Veloso M, Stone P, Han K (1999) The CMUnited-97 robotic soccer team: Perception and multiagent control. Robot Auton Syst 29(2–3):133–143

    Google Scholar 

  116. Wagner I, Lindenbaum M, Bruckstein AM (2000) Mac vs. PC – determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. Int J Robot Res 19(1):12–31

    Google Scholar 

  117. Wang J (1991) Fully distributed traffic control strategies for many-AGV systems. In: Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, Osaka 2–5 Nov 1991, pp 1199–1204

    Google Scholar 

  118. Wang J, Beni G (1990) Distributed computing problems in cellular robotic systems. In: Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, pp 819–826

    Google Scholar 

  119. Wang PKC (1989) Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains. Int J Control 50(6):2109–2124

    MATH  Google Scholar 

  120. Wang PKC (1989) Interaction dynamics of multiple mobile robots with simple navigation strategies. J Robot Syst 6(1):77–101

    MATH  Google Scholar 

  121. Warren CW (1990) Multiple robot path coordination using artificial potential fields. In: Proceedings of IEEE International Conference on Robotics and Automation, 13–18 May 1990, pp 500–505

    Google Scholar 

  122. Weigel T, Gutmann JS, Dietl M, Kleiner A, Nebel B (2002) CS Freiburg: coordinating robots for successful soccer playing. IEEE Trans Robot Autom 5(18):685–699

    Google Scholar 

  123. Werger BB, Mataric MJ (2000) Broadcast of local eligibility for multi-target observation. In: Parker LE, Bekey G, Barhen J (eds) Distributed autonomous robotic systems 4. Springer, New York, pp 347–356

    Google Scholar 

  124. Yannakakis MZ, Papadimitriou CH, Kung HT (1979) Locking policies: Safety and freedom for deadlock. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science, San Juan, 29–31 Oct 1979, pp 286–297

    Google Scholar 

  125. Yuta S, Premvuti S (1992) Coordinating autonomous and centralized decision making to achieve cooperative behaviors between multiple mobile robots. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent robots and systems, Raleigh, 7–10 July 1992, pp 1566–1574

    Google Scholar 

Books and Reviews

  1. Arai T, Ota J (1992) Motion planning of multiple mobile robots. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent robots and systems, Raleigh, 7–10 July 1992, pp 1761–1768

    Google Scholar 

  2. Arai T, Pagello E, Parker LE (2002) Editorial: Advances in multi-robot systems. IEEE Trans Robot Autom 18(5):655–661

    Google Scholar 

  3. Cao Y, Fukunaga A, Kahng A (1997) Cooperative mobile robotics: Antecedents and directions. Auton Robot 4:1–23

    Google Scholar 

  4. Canny J (1988) The complexity of robot motion planning. MIT Press, Cambridge

    Google Scholar 

  5. Choset H (2001) Coverage for robotics – A survey of recent results. Ann Math Artif Intell 31(1–4):113–126

    Google Scholar 

  6. Nardi D, Farinelli A, Iocchi L (2004) Multirobot systems: a classification focused on coordination. IEEE Trans Syst Man Cybern Part B 34(5):2015–2028

    Google Scholar 

  7. Parker LE (2005) Current research in multirobot teams. Artif Life Robot 7(2–3):1–5

    Google Scholar 

  8. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Parker, L.E. (2009). Multiple Mobile Robot Teams, Path Planning and Motion Coordination in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_344

Download citation

Publish with us

Policies and ethics