Definition of the Subject
The Navier–Stokes equations are a mathematical model aimed at describing the motion of an incompressible viscous fluid , like many commonones as, for instance, water, glycerin, oil and, under certain circumstances, also air. They were introduced in 1822 by the French engineer Claude LouisMarie Henri Navier and successively re-obtained, by different arguments, by a number of authors including Augustin-Louis Cauchy in 1823,Siméon Denis Poisson in 1829, Adhémar Jean Claude Barré de Saint-Venant in 1837, and, finally, George Gabriel Stokes in 1845. We refer the reader tothe beautiful paper by Olivier Darrigol [17], for a detailed and thorough analysis of thehistory of the Navier–Stokes equations.
Even though, for quite some time, their significance in the applications was not fully recognized, the Navier–Stokes equations are, nowadays,at the foundations of many branches of applied sciences, including Meteorology, Oceanography, Geology, Oil Industry, Airplane, Ship...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Abbreviations
- Steady-State flow:
-
Flow where both velocity and pressure fields are time-independent.
- Three-dimensional (or 3D) flow:
-
Flow where velocity and pressure fields depend on all three spatial variables.
- Two-dimensional (or planar, or 2D) flow:
-
Flow where velocity and pressure fields depend only on two spatial variables belonging to a portion of a plane, and the component of the velocity orthogonal to that plane is identically zero.
- Local solution:
-
Solution where velocity and pressure fields are known to exist only for a finite interval of time.
- Global solution:
-
Solution where velocity and pressure fields exist for all positive times.
- Regular solution:
-
Solution where velocity and pressure fields satisfy the Navier–Stokes equations and the corresponding initial and boundary conditions in the ordinary sense of differentiation and continuity.
At times, we may interchangeably use the words “flow” and “solution”.
- Basic notation:
-
\( { \mathbb{N} } \) is the set of positive integers. \( { \mathbb{R} } \) is the field of real numbers and \( { \mathbb{R}^N } \), \( { N\in\mathbb{N} } \), is the set of all N-tuple \( { \boldsymbol{x}=(x_1,\dots,x_N) } \). The canonical base in \( { \mathbb{R}^N } \) is denoted by \( { \{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3,\ldots, \boldsymbol{e}_N\}\equiv\{\boldsymbol{e}_i\} } \). For \( { a,b\in\mathbb{R} } \), \( { b > a } \), we set \( { (a,b)=\{x\in\mathbb{R}: a < x < b\} } \), \( { [a,b]=\{x\in\mathbb{R}: a\le x\le b\} } \), \( [a,b)=\{x\in\mathbb{R}: a\le x < b\} \) and \( { (a,b]=\{x\in\mathbb{R}: a < x\le b\} } \). By \( { \bar{\mathcal{A}} } \) we indicate the closure of the subset \( { \mathcal{A} } \) of \( { \mathbb{R}^N } \). A domain is an open connected subset of \( { \mathbb{R}^N } \). Given a second-order tensor \( { \boldsymbol{A} } \) and a vector \( { \boldsymbol{a} } \), of components \( { \{A_{ij}\} } \) and \( { \{a_{i}\} } \), respectively, in the basis \( { \{\boldsymbol{e}_{i}\} } \), by \( { \boldsymbol{a}\cdot\boldsymbol{A} } \) [respectively, \( { \boldsymbol{A}\cdot\boldsymbol{a} } \)] we mean the vector with components \( { A_{ij}a_i } \) [respectively, \( { A_{ij}a_j } \)]. (We use the Einstein summation convention over repeated indices, namely, if an index occurs twice in the same expression, the expression is implicitly summed over all possible values for that index.) Moreover, we set \( { |\boldsymbol{A}|=\sqrt{A_{ij}A_{ij}} } \). If \( { \boldsymbol{h}(\boldsymbol{z})\equiv\{h_i(\boldsymbol{z})\} } \) is a vector field, by \( { \nabla \boldsymbol{h} } \) we denote the second-order tensor field whose components \( { \{\nabla \boldsymbol{h}\}_{ij} } \) in the given basis are given by \( { \{\partial h_j/\partial z_i\} } \).
- Function spaces notation:
-
If \( { \mathcal{A}\subseteq\mathbb{R}^N } \) and \( k\in \mathbb{N}\cup\{0\} \), by \( { C^k(\mathcal{A}) } \) [respectively, \( { C^k(\bar{\mathcal{A}}) } \)] we denote the class of functions which are continuous in \( { \mathcal{A} } \) up to their kth derivatives included [respectively, are bounded and uniformly continuous in \( { \mathcal{A} } \) up to their kth derivatives included]. The subset of \( { C^k(\mathcal{A}) } \) of functions vanishing outside a compact subset of \( { \mathcal{A} } \) is indicated by \( { C^k_0(\mathcal{A}) } \). If \( { u\in C^k(\mathcal{A}) } \) for all \( { k\in \mathbb{N}\cup\{0\} } \), we shall write \( { u\in C^\infty(\mathcal{A}) } \). In an analogous way we define \( { C^\infty(\bar{\mathcal{A}}) } \) and \( { C_0^\infty(\mathcal{A}) } \). The symbols \( { L^q(\mathcal{A}) } \), \( { W^{m,q}(\mathcal{A}) } \), \( { m\ge 0 } \), \( { 1\le q \le \infty } \), denote the usual Lebesgue and Sobolev spaces, respectively (\( { W^{0,q}(\mathcal{A})= L^q(\mathcal{A}) } \)). Norms in \( { L^q(\mathcal{A}) } \) and \( { W^{m,q}(\mathcal{A}) } \) are denoted by \( \smash{ \|\,\cdot\,\|_{q,\mathcal{A}} } \), \( \smash{ \|\,\cdot\,\|_{m,q,\mathcal{A}} } \). The trace space on the boundary, \( { \partial\mathcal{A} } \), of \( { \mathcal{A} } \) for functions from \( { W^{m,q}(\mathcal{A}) } \) will be denoted by \( { W^{m-1/q,q}(\partial\mathcal{A}) } \) and its norm by \( \smash{ \|\,\cdot\|_{m-1/q,q,\partial\mathcal{A}} } \).
By \( { D^{k,q}(\mathcal{A}) } \), \( { k\ge1 } \), \( { 1 < q < \infty } \), we indicate the homogeneous Sobolev space of order \( { (m,q) } \) on \( { \mathcal{A} } \), that is, the class of functions u that are (Lebesgue) locally integrable in \( { \mathcal{A} } \) and with \( { D^\beta u\in L^q(\mathcal{A}) } \), \( { |\beta|=k } \), where \( D^{\beta} ={\partial ^{|\beta|}}/{\partial x_1 ^{\beta_1}\partial x_2^{\beta_2}\dots\partial x_N^{\beta_N}}\, \), \( |\beta|=\beta_1+\beta_2+\dots+\beta_N \). For \( { u\in D^{k,q}(\mathcal{A}) } \), we put
$$ |u|_{k,q,\mathcal{A}}= \left(\sum_{|\beta|=k} \int_\mathcal{A}\mid D^{\beta} u\mid^{q}\right)^{1/q}\:. $$Notice that, whenever confusion does not arise, in the integrals we omit the infinitesimal volume or surface elements. Let
$$ \mathcal{D}(\mathcal{A})=\{\boldsymbol{\varphi}\in C^{\infty}_0(\mathcal{A}):\mathrm{div}\,\boldsymbol{\varphi} = 0\}\:. $$By \( { L^q_\sigma(\mathcal{A}) } \) we denote the completion of \( { \mathcal{D}(\mathcal{A}) } \) in the norm \( { \|\cdot\|_q } \). If \( { \mathcal{A} } \) is any domain in \( { \mathbb{R}^N } \) we have \( { L^2(\mathcal{A})=L^2_\sigma(\mathcal{A})\oplus G(\mathcal{A}) } \), where \( G(\mathcal{A})=\{\boldsymbol{h}\in L^2(\mathcal{A}): \boldsymbol{h}=\nabla p\,,\text{ for some } p\in D^{1,2}(\mathcal{A})\} \); (see Sect. III.1 in [31]). We denote by P the orthogonal projection operator from \( { L^2(\mathcal{A}) } \) onto \( { L^2_\sigma(\mathcal{A}) } \). By \( { \mathcal{D}_0^{1,2}(\mathcal{A}) } \) we mean the completion of \( { \mathcal{D}(\mathcal{A}) } \) in the norm \( { |\,\cdot\,|_{1,2,\mathcal{A}} } \). \( { \mathcal{D}_0^{1,2}(\mathcal{A}) } \) is a Hilbert space with scalar product \( { [\boldsymbol{v}_1,\boldsymbol{v}_2]:=\int_\mathcal{A}(\partial\boldsymbol{v}_1/\partial{x_i})\cdot(\partial\boldsymbol{v}_2/\partial{x_i}) } \). Furthermore, \( { \mathcal{D}_0^{-1,2}(\mathcal{A}) } \) is the dual space of \( { \mathcal{D}_0^{1,2}(\mathcal{A}) } \) and \( { \langle\cdot,\cdot\rangle_{\mathcal{A}} } \) is the associated duality pairing.
If \( { \boldsymbol{g}\equiv\{g_i\} } \) and \( { \boldsymbol{h}\equiv\{h_i\} } \) are vector fields on \( { \mathcal{A} } \), we set
$$ (\boldsymbol{g},\boldsymbol{h})_\mathcal{A}=\int_\mathcal{A} g_i h_i\,, $$whenever the integrals make sense.
In all the above notation, if confusion will not arise, we shall omit the subscript \( { \mathcal{A} } \).
Given a Banach space X, and an open interval \( { (a,b) } \), we denote by \( { L^q(a,b;X) } \) the linear space of (equivalence classes of) functions \( { f:(a,b)\to X } \) whose X-norm is in \( { L^q(a,b) } \). Likewise, for r a non-negative integer and I a real interval, we denote by \( { C^r(I;X) } \) the class of continuous functions from I to X, which are differentiable in I up to the order r included.
If X denotes any space of real functions, we shall use, as a rule, the same symbol X to denote the corresponding space of vector and tensor-valued functions.
Bibliography
Amick CJ (1984) Existence of Solutions to the Nonhomogeneous SteadyNavier–Stokes Equations. Indiana Univ Math J 33:817–830
Amick CJ (1988) On Leray's Problem of Steady Navier–Stokes Flow Pasta Body in the Plane. Acta Math 161:71–130
Ball JM (1997) Continuity Properties and Global Attractors of GeneralizedSemiflows and the Navier–Stokes Equations. J Nonlinear Sci 7:475–502
Batchelor GK (1981) An Introduction to Fluid Mechanics. Cambridge UniversityPress, Cambridge
Beirão da Veiga H (1985) On the Construction of Suitable Weak Solutions to theNavier–Stokes Equations via a General Approximation Theorem. J Math Pures Appl 64:321–334
Beirão da Veiga H (1995) A New Regularity Class for the Navier–StokesEquations in \( { R\sp n } \). Chinese AnnMath Ser B 16:407–412
Berger MS (1977) Nonlinearity and Functional Analysis. Lectures on NonlinearProblems in Mathematical Analysis. Academic Press, New York
Berselli LC, Galdi GP (2002) Regularity Criteria Involving the Pressure for theWeak Solutions to the Navier–Stokes Equations. Proc Amer Math Soc 130:3585–3595
Brown RM, Shen Z (1995) Estimates for the Stokes Operator in LipschitzDomains. Indiana Univ Math J 44:1183–1206
Caccioppoli R (1936) Sulle Corrispondenze Funzionali Inverse Diramate: TeoriaGenerale ed Applicazioni al Problema di Plateau. Rend Accad Lincei 24:258–263; 416–421
Caffarelli L, Kohn R, Nirenberg L (1982) Partial Regularity of Suitable WeakSolutions of the Navier–Stokes Equations. Comm Pure Appl Math 35:771–831
Cattabriga L (1961) Su un Problema al Contorno Relativo al Sistema diEquazioni di Stokes. Rend Sem Mat Padova 31:308–340
Cheskidov A, Foias C (2006) On Global Attractors of the 3DNavier–Stokes Equations. J Diff Eq 231:714–754
Constantin P (1990) Navier–Stokes Equations and Area of Interfaces. CommMath Phys 129:241–266
Constantin P, Fefferman C (1993) Direction of Vorticity and the Problem ofGlobal Regularity for the Navier–Stokes Equations. Indiana Univ Math J 42:775–789
Constantin P, Foias C, Temam R (1985) Attractors Representing TurbulentFlows. Mem Amer Math Soc 53 no. 314 vii, pp 67
Darrigol O (2002) Between Hydrodynamics and Elasticity Theory: The First FiveBirths uof the Navier–Stokes Equation. Arch Hist Exact Sci 56:95–150
Escauriaza L, Seregin G, Sverák V (2003) Backward Uniqueness for ParabolicEquations. Arch Ration Mech Anal 169:147–157
Federer H (1969) Geometric Measure Theory. Die Grundlehren der mathematischenWissenschaften, vol 153. Springer, New York
Finn R, Smith DR (1967) On the stationary solution of the Navier–Stokesequations in two dimensions. Arch Rational Mech Anal 25:26–39
Foias C, Olson EJ (1996) Finite Fractal Dimension andHölder–Lipschitz Parametrization. Indiana Univ Math J 45:603–616
Foias C, Temam R (1977) Structure of the Set of Stationary Solutions ofthe Navier–Stokes Equations. Comm Pure Appl Math 30:149–164
Foias C, Temam R (1989) Gevrey Class Regularity for the Solutions of theNavier–Stokes Equations. J Func Anal 87:359–69
Foias C, Guillopé C, Temam R (1981) New A Priori Estimates forNavier–Stokes Equations in Dimension 3. Comm Partial Diff Equ 6:329–359
Foias C, Manley OP, Temam R (1988) Modelling of the Interaction of Smalland Large Eddies in Two-Dimensional Turbulent Flows. RAIRO Modél Math Anal Numér 22:93–118
Foias C, Manley OP, Rosa R, Temam R (2001) Navier–Stokes Equationsand Turbulence. Encyclopedia of Mathematics and its Applications, 83. Cambridge University Press, Cambridge
Foias C, Sell GR, Temam R (1988) Inertial Manifolds for NonlinearEvolutionary Equations. J Diff Eq 73:309–353
Fujita H (1961) On the Existence and Regularity of the Steady–StateSolutions of the Navier–Stokes Equation. J Fac Sci Univ Tokyo 9:59–102
Fujita H (1998) On stationary solutions to Navier–Stokes equation insymmetric plane domains under general outflow condition. In Salvi R (ed) Navier–Stokes Equations: Theory and Numerical Methods. Pitman Res NotesMath Ser 388:16–30
Galdi GP (1993) Existence and Uniqueness at Low Reynolds Number of StationaryPlane Flow of a Viscous Fluid in Exterior Domains. In: Galdi GP, Necas J (eds) Recent Developments in Theoretical Fluid Mechanics. Pitman ResNotes Math Ser Longman Sci Tech, Harlow 291:1–33
Galdi GP (1998) An Introduction to the Mathematical Theory of theNavier–Stokes Equations. vol I. Linearized Steady Problems. Springer Tracts in Natural Philosophy, 38. Springer, New York (revisedEdition)
Galdi GP (1998) An Introduction to the Mathematical Theory of theNavier–Stokes Equations. vol II. Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, 39. Springer, New York (revisedEdition)
Galdi GP (1999) On the Existence of Symmetric Steady-State Solutions to thePlane Exterior Navier–Stokes Problem for Arbitrary Large Reynolds Number. In: Maremonti P (ed) Advances in fluid dynamics. Quad Mat Aracne Rome4:1–25
Galdi GP (2000) An Introduction to the Navier–StokesInitial-Boundary Value Problem. In: Galdi GP, Heywood JG, Rannacher R (eds) Fundamental Directions in Mathematical Fluid Mechanics. Adv Math FluidMech Birkhäuser, Basel 1:1–70
Galdi GP (2004) Stationary Navier–Stokes Problem ina Two-Dimensional Exterior Domain. In: Chipot M, Quittner P (eds) Stationary partial differential equations. Handb Diff Equ, North-Holland,Amsterdam 1:71–155
Galdi GP (2007) Further Properties of Steady-State Solutions to theNavier–Stokes Problem Past a Threedimensional Obstacle. J Math Phys 48:1–43
Galdi GP (2007) Some Mathematical Properties of the Steady-StateNavier–Stokes Problem Past a Three-Dimensional Obstacle. RWTH Aachen Institut für Mathematik, Report no. 17
Galdi GP, Maremonti P (1988) Regularity of Weak Solutions of theNavier–Stokes System in Arbitrary Domains. Ann Univ Ferrara Sez VII 34:59–73
Galdi GP, Padula M (1990) A new approach to energy theory in thestability of fluid motion. Arch Rational Mech Anal 110:187–286
Galdi GP, Rabier PJ (1999) Functional Properties of the Navier–StokesOperator and Bifurcation of Stationary Solutions: Planar Exterior Domains. In: Escher J, Simonett G (eds) Topics in Nonlinear Analysis. Progr NonlinearDiff Equ Appl. Birkhäuser, Basel 35:273–303
Galdi GP, Heywood JG, Shibata Y (1997) On the Global Existence and Convergenceto Steady State of Navier–Stokes Flow Past an Obstacle that is Started from Rest. Arch Rational Mech Anal138:307–318
Galdi GP, Robertson AM, Rannacher R, Turek S (2007) Hemodynamical Flows:Modeling, Analysis and Simulation. Oberwolfach Seminar Series vol 35. Birkhäuser
Giga Y, Sohr H (1991) Abstract \( { L\sp p } \) Estimates for the Cauchy Problem withApplications to the Navier–Stokes Equations in Exterior Domains. J Funct Anal 102:72–94
Gilbarg D, Weinberger HF (1974) Asymptotic Properties of Leray's Solution ofthe Stationary Two-Dimensional Navier–Stokes Equations. Russian Math Surveys 29:109–123
Gilbarg D, Weinberger HF (1978) Asymptotic Properties of Steady PlaneSolutions of the Navier–Stokes Equations with BoundedDirichlet. Integral Ann Scuola Norm Sup Pisa 5:381–404
Gohberg I, Goldberg S, Kaashoek MA (1990) Classes of LinearOperators:I. Operator Theory. Advances and Applications. vol49. Birkhäuser, Basel
Guermond JL (2007) Faedo–Galerkin Weak Solutions of theNavier–Stokes Equations with Dirichlet Boundary Conditions are Suitable. J Math Pures Appl 88:87–106
Gustafson S, Kang K, Tsai TP (2006) Regularity Criteria for Suitable WeakSolutions of the Navier–Stokes Equations Near the Boundary. J Diff Equ 226:594–618
Gustafson S, Kang K, Tsai TP (2007) Interior Regularity Criteria for SuitableWeak Solutions of the Navier–Stokes Equations. Comm Math Phys 273:161–176
Heywood JG (1980) The Navier–Stokes Equations: on the Existence,Regularity and Decay of Solutions. Indiana Univ Math J 29:639–681
Heywood JG, Rannacher R (1993) On the Question of Turbulence Modeling byApproximate Inertial Manifolds and the Nonlinear Galerkin Method. SIAM J Numer Anal 30:1603–1621
Hopf E (1941) Ein Allgemeiner Endlichkeitsatz der Hydrodynamik. Math Annalen117:764–775
Hopf E (1948) A Mathematical Example Displaying Features ofTurbulence. Comm Pure Appl Math 1:303–322
Hopf E (1951) Über die Anfangswertaufgabe für die hydrodynamischenGrundgleichungen. Math Nachr 4:213–231
Kozono H, Sohr H (2000) Remark on Uniqueness of Weak Solutions to theNavier–Stokes Equations. Analysis 16:255–271
Kozono H, Taniuchi Y (2000) Bilinear Estimates in BMO and theNavier–Stokes Equations. Math Z 235:173–94
Kozono H, Yatsu N (2004) Extension Criterion via Two-Components of Vorticityon Strong Solutions to the 3D Navier–Stokes Equations. Math Z 246:55–68
Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressibleflow. Revised English edition. Gordon and Breach Science, New York-London
Ladyzhenskaya OA (1991) Attractors for Semigroups and EvolutionEquations. Lezioni Lincee. Cambridge University Press, Cambridge
Ladyzhenskaya OA, Seregin GA (1999) On Partial Regularity of Suitable WeakSolutions to the Three-Dimensional Navier–Stokes Equations. J Math Fluid Mech 1:356–387
Leray J (1933) Etude de Diverses Òquations Intégrales non Linéaireset de Quelques Problèmes que Pose l' Hydrodynamique. J Math Pures Appl 12:1–82
Leray J (1934) Sur le Mouvement d'un Liquide Visqueux Emplissantl'Espace. Acta Math 63:193–248
Leray J (1936) Les Problémes non Linéaires. Enseignement Math35:139–151
Lin F (1998) A New Proof of the Caffarelli–Kohn-NirenbergTheorem. Comm. Pure Appl Math 51:241–257
Marchioro C (1986) An Example of Absence of Turbulence for any ReynoldsNumber. Comm Math Phys 105:99–106
Maremonti P (1998) Some Interpolation Inequalities Involving Stokes Operatorand First Order Derivatives. Ann Mat Pura Appl 175:59–91
Málek J, Padula M, Ruzicka M (1995) A Note on Derivative Estimates fora Hopf Solution to the Navier–Stokes System in a Three-Dimensional Cube. In: Sequeira A (ed) Navier–Stokes Equations andRelated Nonlinear Problems. Plenum, New York 141–146
Natarajan R, Acrivos A (1993) The Instability of the Steady Flow PastSpheres and Disks. J Fluid Mech 254:323–342
Neustupa J, Novotný A, Penel P (2002) An Interior Regularity of a WeakSolution to the Navier–Stokes Equations in Dependence on one Component of Velocity. In: Galdi GP, Rannacher R (eds) Topics in mathematical fluidmechanics. Quad Mat Aracne, Rome 10:163–183
Nirenberg L (1959) On Elliptic Partial Differential Equations. Ann Scuola NormSup Pisa 13:115–162
Prodi G (1959) Un Teorema di Unicità per le Equazioni diNavier–Stokes. Ann Mat Pura Appl 48:173–182
Prodi G (1962) Teoremi di Tipo Locale per il Sistema di Navier–Stokes eStabilità delle Soluzioni Stazionarie. Rend Sem Mat Univ Padova 32:374–397
Rosa R (1998) The Global Attractor for the 2D Navier–Stokes Flow on SomeUnbounded Domains. Nonlinear Anal 32:71–85
Ruelle D, Takens F (1971) On the Nature of Turbulence. Comm Math Phys20:167–192
Sather J (1963) The Initial Boundary Value Problem for theNavier–Stokes Equations in Regions with Moving Boundaries. Ph.D. thesis, University of Minnesota
Scheffer V (1976) Partial Regularity of Solutions to the Navier–StokesEquations. Pacific J Math 66:535–552
Scheffer V (1977) Hausdorff Measure and the Navier–StokesEquations. Comm Math Phys 55:97–112
Scheffer V (1980) The Navier–Stokes Equations on a BoundedDomain. Comm Math Phys 73:1–42
Sell GR (1996) Global Attractors for the Three-Dimensional Navier-StokesEquations. J Dynam Diff Eq 8:1–33
Seregin G, Sverák V (2002) The Navier–Stokes Equations and BackwardUniqueness. In: Birman MS, Hildebrandt S, Solonnikov VA, Uraltseva NN (eds) Nonlinear problems in mathematical physics and related topics, II. Int MathSer (N. Y.) Kluwer/Plenum, New York 2:353–366
Seregin GA, Shilkin TN, Solonnikov VA (2006) Boundary Partial Regularity forthe Navier–Stokes Equations. J Math Sci 132:339–358
Serrin JB (1962) On the Interior Regularity of Weak Solutions of theNavier–Stokes Equations. Arch Rational Mech Anal 9:187–195
Serrin JB (1963) The Initial Value Problem for the Navier–StokesEquations. In: Langer RE (ed) Nonlinear Problems. University of Wisconsin Press, pp. 69–98
Smale S (1965) An Infinite Dimensional Version of Sard's Theorem. AmerJ Math 87:861–866
Smale S (1967) Differentiable Dynamical Systems. Bull Amer Math Soc73:747–817
Sohr H (2001) The Navier–Stokes Equations. An Elementary FunctionalAnalytic Approach. Birkhäuser, Basel
Sohr H, von Wahl W (1984) On the Singular Set and the Uniqueness of WeakSolutions of the Navier–Stokes Equations. Manuscripta Math 49:27–59
Stein EM (1970) Singular Integrals and Differentiability Properties ofFunctions. Princeton University Press, Princeton
Stokes GG (1851) On the Effect of the Internal Friction of Fluids on theMotion of Pendulums. Trans Cambridge Phil Soc 9:8–106
Takeshita A (1993) A Remark on Leray's Inequality. Pacific J Math 157:151–158
Taneda S (1956) Experimental Investigation of the Wake Behind a Sphere atLow Reynolds Numbers. J Phys Soc Japan 11:1104–1111
Temam R (1986) Infinite-Dimensional Dynamical Systems in FluidMechanics. In: Browder F (ed) Nonlinear Functional Analysis and its Applications, Part 2. Proc. Sympos. Pure Math Amer. Math Soc. Providence, RI45:431–445
Temam R (1995) Navier–Stokes Equations and Nonlinear FunctionalAnalysis. CBMS-NSF Regional Conference Series in Applied Mathematics, 66
Temam R (1997) Infinite-Dimensional Dynamical Systems in Mechanics andPhysics. Second edition. Applied Mathematical Sciences, 68. Springer, New York
Tomboulides AG, Orszag SA (2000) Numerical Investigation of Transitional andWeak Turbulent Flow Past a Sphere. J Fluid Mech 416:45–73
Vorovich II, Youdovic VI (1961) Stationary Flow of a ViscousIncompressible Fluid. Mat Sb 53:393–428 (in Russian)
Wu JS, Faeth GM (1993) Sphere Wakes in Still Surroundings at IntermediateReynolds Numbers. AIAA J 31:1448–1460
Xie W (1997) Sharp Sobolev Interpolation Inequalities for the Stokes Operator.Diff Inte Equ 10:393–399
Zeidler E (1988) Nonlinear Functional Analysis and Applications: Applicationto Mathematical Physics. Springer, New York
Zeidler E (1995) Applied Functional Analysis: Main Principles and theirApplications. Applied Math Sci., Springer, vol 109
Acknowledgment
This work was partially supported by the National Science Foundation, Grants DMS-0404834 andDMS-0707281.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag
About this entry
Cite this entry
Galdi, G.P. (2009). Navier–Stokes Equations : A Mathematical Analysis. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_350
Download citation
DOI: https://doi.org/10.1007/978-0-387-30440-3_350
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-75888-6
Online ISBN: 978-0-387-30440-3
eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics