Skip to main content

n-Body Problem and Choreographies

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 231 Accesses

Definition of the Subject

The motion of n-point particles of positions \( { x_i(t)\in {\mathbb{R}}^3 } \) and masses \( { m_i > 0 } \), interacting in accordance with Newton's law of gravitation, satisfies thesystem of differentialequations :

$$ -m_i\ddot x_i(t)=G\sum_{j\neq i, j=1}^nm_i m_j \frac{x_i-x_j}{|x_i-x_j|^3}\:,\\ i=1,\ldots,n,\:,\quad t \in {\mathbb{R}}\:. $$
(1)

The n-body problem consists in solving Eq. (1) associated with initial or boundary conditions.

simple choreography is a periodic solution to the n-bodyproblem Eq. (1) where the bodies lie on the same curve and exchange their mutual positions aftera fixed time, namely, there exists a function \( {x:{\mathbb{R}}\to{\mathbb{R}} } \) such that

$$ x_i(t)=x(t+(i-1) \tau)\:,\quad i=1,\ldots,n\:,\quad t \in {\mathbb{R}}\:, $$
(2)

where \( { \tau = 2\pi/n } \).

Introduction

The two-body problem can be reduced, by the conservation of the linear momentum, to the one centerKepler problem and can be completely solved either...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Formula N. 13 quoted by Poincaré is Hamilton equation and covers our class od Dynamical Systems Eq. (3)

  2. 2.

    Highly likely they are not distinct families: this is the recurring phenomenon of “more symmetries than expected” in n-body problems.

Abbreviations

Central configurations:

Are the critical points of the potential constrained on the unitary moment of inertia ellipsoid. Central configurations are associated to particular solutions to the n-body problem: the relative equilibrium and the homographic motions defined in Definition 1.

Choreographical solution:

A choreographical solution of the n-body problem is a solution such that the particles move on the same curve, exchanging their positions after a fixed time. This property can be regarded as a symmetry of the trajectory. This notion finds a natural generalization in that of G-equivariant trajectory defined in Definition 2 for a given group of symmetries-G. The G-equivariant minimization technique consists in seeking action minimizing trajectories among all G-equivariant paths.

Collision and singularities:

When a trajectory can not be extended beyond a certain time b we say that a singularity occurs. Singularities can be collisions if the solution admits a limit configuration as \( { t\to b } \). In such a case we term bcollision instant.

n-Body problem:

The n-body problem is the system of differential equations (1) associated with suitable initial or boundary value data. A solution or trajectory is a doubly differentiable path \( { q(t)=(q_1(t),\dots,q_n(t)) } \) satisfying (1) for all t. The weaker notion of generalized solution is defined in Definition 5 applies to trajectories found by variational methods.

Variational approach:

The variational approach to the n-body problem consists in looking at trajectories as critical points of the action functional defined in (4). Such critical points can be (local) minimizers, or constrained minimizers or mountain pass, or other type.

Bibliography

Primary Literature

  1. Albouy A (1996) The symmetric central configurations of four equalmasses. Contemp Math 198:131–135

    MathSciNet  Google Scholar 

  2. Albouy A (1998) Chenciner A, Le problème des n corps et les distances mutuelles. Invent Math 131:151–184

    MathSciNet  ADS  MATH  Google Scholar 

  3. Ambrosetti A, Coti Zelati V (1993) Periodic solutions of singular Lagrangiansystems. In: Progress in Nonlinear Differential Equations and their Applications, vol 10. Birkhäuser Boston Inc., Boston

    Google Scholar 

  4. Ambrosetti A, Coti Zelati V (1994) Non-collision periodic solutions fora class of symmetric 3-body type problems. Topol Meth Nonlin Anal 3(2):197–207

    MathSciNet  MATH  Google Scholar 

  5. Ambrosetti A, Rabinowitz PH (1973) Dual variational methods in critical pointtheory and applications. J Funct Anal 14:349–381

    Google Scholar 

  6. Arioli G, Gazzola F, Terracini S (2000) Minimization properties of Hill's orbitsand applications to some N-body problems. Ann Inst H Poincaré Anal Non Linéaire17:(5)617–650

    Google Scholar 

  7. Arioli G, Barutello V, Terracini S (2006) A new branch of mountain passsolutions for the choreographical 3-body problem. Commun Math Phys 268(5):439–463

    MathSciNet  ADS  MATH  Google Scholar 

  8. Arnold VI (1963) Small denominators and problems of stability of motions inclassical and celestial mechanics. Uspehi Naut Nauk 18(6):91–192

    Google Scholar 

  9. Bahri A, Rabinowitz PH (1991) Periodic solutions of Hamiltonian systems of3-body type. Ann Inst H Poincaré Anal Non Linéaire 8(6):561–649

    Google Scholar 

  10. Barutello V (2004) On the n-bodyproblem, Ph. D thesis, Università di Milano–Bicocca, avaliable athttp://www.matapp.unimib.it/dottorato/

  11. Barutello V, Secchi S (2008) Morse index properties ofcolliding solutions to the n-body problem. Arxiv:math/0609837, Annalesde l'Institut Henri Poincare (C) Non Linear Anal 25:539–565

    MathSciNet  ADS  MATH  Google Scholar 

  12. Barutello V, Terracini S (2004) Action minimizing orbits in the n-body problem with choreography constraint. Nonlinearity 17:2015–2039

    MathSciNet  ADS  MATH  Google Scholar 

  13. Barutello V, Terracini S (2007) A bisectionalgorithm for the numerical Mountain Pass, NoDEA 14:527–539

    MathSciNet  MATH  Google Scholar 

  14. BarutelloV, Ferrario DL, Terracini S (2008) Symmetry groups of the planar3-body problem and action–minimizing trajectories. Arch RatMech Anal 190:189–226

    MathSciNet  MATH  Google Scholar 

  15. Barutello V, Ferrario DL, Terracini S (2008) On the singularities ofgeneralized solutions to the N-body problem. Int Math Res Notices 2008:rnn069–78

    MathSciNet  Google Scholar 

  16. Berti M, Biasco L, Valdinoci E (2004) Periodic orbits close to invariant toriand applications to the three-body problem. Ann Scuola Norm Sup Pisa Cl Sci 5 vol III:87–138

    MathSciNet  Google Scholar 

  17. Bessi U, Coti Zelati V (1991) Symmetries and noncollision closed orbits forplanar N-body-type problems. Nonlin Anal 16(6):587–598

    MathSciNet  MATH  Google Scholar 

  18. Biasco L, Chierchia L, Valdinoci E (2003) Elliptic two dimensional invarianttori for the planetary three-body problem. Arch Rat Mech Anal 170:91–135

    MathSciNet  MATH  Google Scholar 

  19. Biasco L, Chierchia L, Valdinoci E (2006) N-dimensional elliptic invariant tori for the planetary (\( { N+1 } \))-body problem. SIAMJ Math Anal 37:1560–1588

    MathSciNet  MATH  Google Scholar 

  20. Chen K-C (2001) Action-minimizing orbits in the parallelogram four-bodyproblem with equal masses. Arch Rat Mech Anal 158:293–318

    MATH  Google Scholar 

  21. Chen K-C (2001) On Chenciner–Montgomery's orbit in the three-bodyproblem. Discrete Contin Dyn Syst 7(1):85–90

    MATH  Google Scholar 

  22. Chen K-C (2003) Binary decompositions for planar n-body problems and symmetric periodic solutions. Arch Rat Mech Anal 170(3):247–276

    MATH  Google Scholar 

  23. Chen K-C (2003) Variational methods on periodic and quasi-periodicsolutions for the N-body problem. Ergodic Theory Dyn Syst 23(6):1691–1715

    MATH  Google Scholar 

  24. ChencinerA (2002) Action minimizing periodic orbits in the Newtoniann-body problem Celestial Mechanics, dedicated to DonSaari. Contemp Math 292:71–90

    MathSciNet  Google Scholar 

  25. Chenciner A (2002) Action minimizing solutions of the newtonian n-body problem: from homology to symmetry. ICM, Peking

    Google Scholar 

  26. Chenciner A (2002) Simple non-planar periodic solutions ofthe n-body problem. In: Proceedings of the NDDS Conference, Kyoto

    Google Scholar 

  27. Chenciner A, Desolneux N (1998) Minima de l'intégrale d'action et équilibrerelatifs de n corps. C R Acad Sci Paris Sér I 326:1209–1212; Correction in: (1998) C R Acad Sci Paris Sér I327:193

    MathSciNet  ADS  MATH  Google Scholar 

  28. Chenciner A, Féjoz J (2005) L'équation aux variations verticales d'unéquilibre relatif comme source de nouvelles solutions périodiques du problème des N corps. C RMath. Acad. Sci. Paris 340(8):593–598

    Google Scholar 

  29. Chenciner A, Montgomery R (2000) A remarkable periodic solution of thethree body problem in the case of equal masses. Ann Math 152(3):881–901

    MathSciNet  MATH  Google Scholar 

  30. Chenciner A, Venturelli A (2000) Minima de l'intégrale d'action du problèmeNewtonien de 4 corps de masses égales dans \( { \mathbb{R}^3 } \): orbites “hip–hop”. Celest Mech 77:139–152

    MathSciNet  ADS  MATH  Google Scholar 

  31. Chenciner A, Féjoz J, Montgomery R (2005) Rotating eights. I. The threeG i families. Nonlinearity 18(3):1407–1424

    Google Scholar 

  32. Chenciner A, Gerver J, Montgomery R, Simó C (2001) Simple choreographies ofN bodies: a preliminarystudy. In: Geometry, Mechanics and Dynamics. Springer, New York, pp 287–308

    Google Scholar 

  33. Degiovanni M, Giannoni F (1988) Dynamical systems with newtonian typepotentials. Ann. Scuola Norm Sup Pisa, Ser IV 15:467–494

    MathSciNet  MATH  Google Scholar 

  34. Degiovanni M, Giannoni F, Marino A (1987) Dynamical systems with newtoniantype potentials. Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur Ser 8(81):271–278

    Google Scholar 

  35. Dell'Antonio G (1998) Non-collision periodic solutions of the N-body system. NoDEA Nonlinear Differ Equ Appl 5:1 117–136

    MathSciNet  Google Scholar 

  36. Devaney RL (1978) Collision orbits in the anisotropic Kepler problem. InventMath 45(3):221–251

    MathSciNet  ADS  MATH  Google Scholar 

  37. Devaney RL (1978) Nonregularizability of the anisotropic Kepler problem. J Differ Equ 29(2):252–268

    MathSciNet  Google Scholar 

  38. Devaney RL (1980) Triple collision in the planar isosceles three-body problem.Invent Math 60(3):249–267

    MathSciNet  ADS  MATH  Google Scholar 

  39. Devaney RL (1981) Singularities in classical mechanical systems. in: Ergodictheory and dynamical systems, I. College Park, Md., 1979–80, vol 10 of Progr Math. Birkhäuser, Boston,pp 211–333

    Google Scholar 

  40. Diacu F (1992) Regularization of partial collisions in the N-body problem. Differ Integral Equ 5(1):103–136

    MathSciNet  MATH  Google Scholar 

  41. Diacu F (1993) Painlevé's conjecture. Math Intell15(2):6–12

    MathSciNet  MATH  Google Scholar 

  42. Diacu F (1996) Near-collision dynamics for particle systems withquasihomogeneous potentials. J Differ Equ 128(1):58–77

    MathSciNet  MATH  Google Scholar 

  43. Diacu F (2002) Singularities of the N-bodyproblem. in: Classical and celestial mechanics. Princeton Univ. Press, Princeton, pp 35–62, Recife, 1993/1999

    Google Scholar 

  44. Diacu F, Santoprete M (2004) On the global dynamics of the anisotropic Manevproblem. Phys D 194(1–2):75–94

    MathSciNet  MATH  Google Scholar 

  45. Diacu F, Pérez-Chavela E, Santoprete M (2006) Central configurations andtotal collisions for quasihomogeneous n-body problems. Nonlinear Anal65(7):1425–1439

    Google Scholar 

  46. Diacu F, Pérez-Chavela E, Santoprete M (2005) The Kepler problem withanisotropic perturbations. J Math Phys 46(7):072701, 21

    Google Scholar 

  47. ElBialy MS (1990) Collision singularities in celestial mechanics. SIAM J MathAnal 21(6):1563–1593

    MathSciNet  MATH  Google Scholar 

  48. Féjoz J (2004) Démonstration du “théorème d'Arnold” sur lastabilité du sistème planetaire (d'aprés Michel Herman). (french) [Proof of “Arnold's theorem” on the stability of a planetary system(following Michel Herman)], Ergodic Theory Dyn Syst 24(5):1521–1582

    Google Scholar 

  49. Ferrario DL (2002) Symmetric periodic orbits for the n-body problem: some preliminary results, Preprint of the Max-Planck-Institut für Mathematik MPI-2002-79

    Google Scholar 

  50. FerrarioDL (2007) Transitive decomposition of symmetry groups for the n-body problem. Adv Math 213:763–784

    MathSciNet  MATH  Google Scholar 

  51. Ferrario DL (2006) Symmetry groups and non-planar collisionlessaction-minimizing solutions of the three-body problem in three-dimensional space. Arch Rat Mech Anal179(3):389–412

    MathSciNet  MATH  Google Scholar 

  52. Ferrario D, Terracini S (2004) On the existence of collisionless equivariantminimizers for the classical n-body problem. Invent Math 155(2)305–362

    MathSciNet  ADS  MATH  Google Scholar 

  53. The GAP Group (2002) GAP – Groups, Algorithms, and Programming,Version 4.3, http://www.gap-system.org

  54. Gordon WB (1975) Conservative dynamical systems involving strong forces.Trans Am Math Soc 204:113–135

    MATH  Google Scholar 

  55. Gordon WB (1977) A minimizing property of Keplerian orbits. AmJ Math 99(5):961–971

    MATH  Google Scholar 

  56. Jefferys WH, Moser J (1966) Quasi-periodic solutions for the three-bodyproblem. Celest Mech Dyn Astron J 71:508–578

    MathSciNet  Google Scholar 

  57. Laskar J, Robutel P (1995) Stability of the planetary three-body problem, I:Expansion of the planetary Hamiltonian. Celest Mech Dyn Astron 62(3):193–217

    MathSciNet  ADS  MATH  Google Scholar 

  58. Levi Civita T (1918) Sur la régularization du problème des trois corps. ActaMath 42:99–144

    MathSciNet  Google Scholar 

  59. Majer P, Terracini S (1993) Periodic solutions to some problemsof n-body type. Arch Rat Mech Anal 124(4):381–404

    MathSciNet  MATH  Google Scholar 

  60. Majer P, Terracini S (1995) On the existence of infinitely many periodicsolutions to some problems of n-body type. Commun Pure Appl Math 48(4):449–470

    MathSciNet  MATH  Google Scholar 

  61. Majer P, Terracini S (1995) Multiple periodic solutions to some n-body type problems via a collision index Variational methods in nonlinear analysis (Erice, 1992). Gordon and Breach,Basel, pp 245–262

    Google Scholar 

  62. Marchal C (2000) The family P 12 of the three-body problem – the simplest family of periodic orbits, with twelve symmetriesper period. Celest Mech Dyn Astronom 78(1–4):279–298; (2001) New developments in the dynamics of planetary systems. Badhofgastein,2000

    MathSciNet  ADS  MATH  Google Scholar 

  63. Marchal C (2002) How the method of minimization of action avoidssingularities. Celest Mech Dyn Astron 83:325–353

    MathSciNet  ADS  MATH  Google Scholar 

  64. Mather JN, McGehee R (1974) Solutions of the collinear four body problem whichbecome unbounded in finite time. In: Dynamical systems, theory and applications. Rencontres, Battelle Res Inst, Seattle, Wash.,pp 573–597. Lecture Notes in Phys., vol 38. Springer, Berlin, (1975)

    Google Scholar 

  65. McGehee R (1974) Triple collision in the collinear three-body problem. InventMath 27:191–227

    MathSciNet  ADS  MATH  Google Scholar 

  66. McGehee R (1986) von Zeipel's theorem on singularities in celestialmechanics. Exposition Math 4(4):335–345

    MathSciNet  MATH  Google Scholar 

  67. Moeckel R (1990) On central configurations, Math Zeit205:499–517

    MathSciNet  MATH  Google Scholar 

  68. Moeckel R (1987) Some qualitative features of the three-body problem. in:Hamiltonian dynamical systems. (Boulder, 1987) vol 81 ofContemp Math, pp 1–22. Am Math Soc, Providence RI, 1988

    Google Scholar 

  69. Montgomery R (1998) The N-body problem, thebraid group, and action-minimizing periodic solutions. Nonlinearity 11(2):363–376

    MathSciNet  ADS  MATH  Google Scholar 

  70. Montgomery R (1999) Action spectrum and collisions in the planar three-bodyproblem. In: Celestial Mechanics. (Evanston, 1999) vol 292 of Contemp Math Am Math Soc, Providence RI, 2002,pp 173–184

    Google Scholar 

  71. Moore C (1993) Braids in classical dynamics. Phys Rev Lett70(24):3675–3679

    MathSciNet  ADS  MATH  Google Scholar 

  72. Pacella F (1987) Central configurations and the equivariant Morse theory. ArchRat Mech 97:59–74

    MathSciNet  MATH  Google Scholar 

  73. Palais RS (1979) The principle of symmetric criticality. Commun Math Phys69:19–30

    MathSciNet  ADS  MATH  Google Scholar 

  74. Poincaré H (1896) Sur les solutions périodiques et le principe de moindreaction. C R Acad Sci Paris, Sér I Math 123:915–918

    Google Scholar 

  75. Pollard H, Saari DG (1968) Singularities of the n-body problem I. Arch Rat Mech Anal 30:263–269

    MathSciNet  MATH  Google Scholar 

  76. Pollard H, Saari DG (1970) Singularities of the n-body problem II. In: Inequalities II. Academic Press, New York, pp 255–259 (Proc. Second Sympos, US Air Force Acad,Colo, 1967)

    Google Scholar 

  77. Riahi H (1999) Study of the critical points at infinity arising from thefailure of the Palais-Smale condition for n-body type problems. Mem Am Math Soc 138:658,viii+112

    MathSciNet  Google Scholar 

  78. Robutel P (1995) Stability of the planetary three-body problem, II: KAM theoryand existence of quasi-periodic motions. Celest Mech Dyn Astron 62(3):219–261

    MathSciNet  ADS  MATH  Google Scholar 

  79. Saari DG (1972/73) Singularities and collisions of Newtonian gravitationalsystems. Arch Rat Mech Anal 49:311–320

    Google Scholar 

  80. Sbano L (1998) The topology of the planar three-body problem with zero totalangular momentum and the existence of periodic orbits. Nonlinearity 11(3):641–658

    MathSciNet  ADS  MATH  Google Scholar 

  81. Serra E, Terracini S (1992) Collisionless periodic solutions to somethree-body problems. Arch Rat Mech Anal 120(4):305–325

    Google Scholar 

  82. Serra E, Terracini S (1994) Noncollision solutions to some singularminimization problems with Keplerian-like potentials. Nonlinear Anal 22(1):45–62

    MathSciNet  MATH  Google Scholar 

  83. Sperling HJ (1970) On the real singularities of the N-body problem. J Reine Angew Math 245:15–40

    MathSciNet  ADS  MATH  Google Scholar 

  84. Sundman KF (1913) Mémoire sur le problème des trois corps. Acta Math36:105–179

    MathSciNet  Google Scholar 

  85. Terracini S, Venturelli A (2007) Symmetric trajectories for the\( { 2N } \)-body problem with equalmasses. Arch Rat Mech Anal 184(3):465–493

    MathSciNet  MATH  Google Scholar 

  86. Venturelli A (2001) Une caractérisation variationnelle des solutions deLagrange du problème plan des trois corps, C R Acad Sci Paris, Sér I Math 332(7):641–644

    MathSciNet  ADS  MATH  Google Scholar 

  87. Venturelli A (2002) Application de la minimisation de l'action au Problèmedes N corps dans le plan et dans l'espace. Thesis. University Paris VII

    Google Scholar 

  88. Wang Q (1991) The global solution of the n-body problem, Celest Mech Dyn Astron 50(1):7388

    Google Scholar 

  89. Wintner A (1941) The analytical foundations of celestial mechanics. PrincetonMathematical Series, vol 5. Princeton University Press, Princeton

    Google Scholar 

  90. Xia Z (1992) The existence of non collision singularities in newtoniansystems. Ann Math 135:411–468

    MATH  Google Scholar 

  91. Von Zeipel H (1908) Sur les singularités du problème des n corps. Ark Math Astr Fys 4:1–4

    Google Scholar 

Books and Reviews

  1. Arnold VI, Kozlov V, Neishtadt A (2006) Mathematical aspects of classical and celestial mechanics [Dynamical systems. III]. 3rd edn. In: Encyclopaedia of Mathematical Sciences, vol 3. Springer, Berlin, xiv and p 518, translated from the Russian original by Khukhro E

    Google Scholar 

  2. Diacu F, Holmes P (1996) Celestial encounters. The origins of chaos and stability. Princeton University Press, Princeton

    Google Scholar 

  3. Meyer, Kenneth R (1999) Periodic solutions of the N-body problem, Lecture Notes in Mathematics, 1719. Springer, Berlin

    Google Scholar 

  4. Moser J (1973) Stable and random motions in dynamical systems, With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton NJ, Annals of Mathematics Studies, No. 77. Princeton University Press, Princeton

    Google Scholar 

  5. Pollard H (1976) Celestial mechanics, Carus Mathematical Monographs, 18. Mathematical Association of America, Washington

    Google Scholar 

  6. Saari D (2005) Collisions, rings, and other Newtonian N-body problems, CBMS Regional Conference Series in Mathematics, 104. American Mathematical Society, Providence RI, Washington, Published for the Conference Board of the Mathematical Sciences

    Google Scholar 

  7. Siegel CL, Moser JK (1995) Lectures on celestial mechanics. Classics in Mathematics. Springer, Berlin, Translated from the German by Kalme CI, Reprint of the 1971 translation

    Google Scholar 

  8. Stiefel EL, Scheifele G (1971) Linear and regular celestial mechanics. Perturbed two-body motion, numerical methods, canonical theory. Die Grundlehren der mathematischen Wissenschaften, Band 174. Springer, New York, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Terracini, S. (2009). n-Body Problem and Choreographies . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_351

Download citation

Publish with us

Policies and ethics