Skip to main content

Noise and Stability in Modelocked Soliton Lasers

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 258 Accesses

Definition of the Subject

Since its conception in 1958, the laser has become a nearlyubiquitous feature of the technological landscape finding its wayinto a spectacular array of devices from data storage toentertainment to fundamental science and metrology and myriadothers. One of the principal features of the laser is itsremarkable coherence. It is a nearly ideal source of monochromaticradiation and from this property the fields of precisionspectroscopy and timekeeping have reaped huge rewards. Recently, aninnovation in the design of a class of ultrashort-pulse lasers hasresulted in a new type of optical clockwork with stability thatrivals and even supercedes that of the best atomic clocks, includingthe cesium-beam clocks which, by international agreement, are usedto define the second. The nearly perfect train of optical pulsesemitted from these laser clocks are associated with a nearly idealspectrum of periodic spikes, or comb-lines, in the opticalfrequency...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

First and second laser thresholds:

Minimum conditions forproducing stable and chaotic laser operation, respectively.

Lorenz equations:

A system of three coupled nonlineardifferential equations describing convective fluid flow incells. These equations and their solutions launched the field of chaostheory.

Modelocked laser:

A laser with evenly spaced modes which havetheir phases locked together so that the superposition of the modescreates a periodic train of very short pulses \( { <1\,\mathrm{ps} } \)).

Poisson photon distribution:

Probability of k photons arrivingin a given interval of time for which there are an average of \( { \bar n } \)photons.

Relaxation oscillation:

Periodic fluctuation about anequilibrium point when a system, initially operating in steady-state,is subjected to a transient perturbation. The system “relaxes” backto equilibrium through a (usually) damped sinusoidal response.

Shot noise:

Noise produced by the random arrival of electrons ina photodetector illuminated by a laser field.

Soliton:

A solitary wave packet which is a solution toa nonlinear wave equation in a medium possessing both dispersion andnonlinearity. These effects balance exactly so that the wave packetmaintains its shape and is stable against perturbations.

Bibliography

  1. Barnes JA, Chi AR, Cutler LS, Healey DJ, LeesonDB, McGunigal TE, Mullen JA Jr, Smith WL, Sydnor RL, Vessot RFC,Winkler GMR (1971) Characterization of frequency stability. IEEETrans Instrum Meas IM-20:105–120

    Google Scholar 

  2. Kroupa VF (ed) (1983) Frequency stability:Fundamentals and measurement. IEEE Press, New York

    Google Scholar 

  3. Sullivan DB, Allan DW, Howe DA, Walls FL (eds)(1990) Characterization of clocks and oscillators: NIST Technical Note1337. United States Government Printing Office, Washington

    Google Scholar 

  4. Siegman AE (1986) Lasers. University ScienceBooks, Mill Valley

    Google Scholar 

  5. Milonni PW, Shih M, Ackerhalt JR (1987) Chaos inLaser-Matter Interactions. World Scientific, Singapore

    Google Scholar 

  6. Narducci LM, Abraham NB (1988) Laser Physics andLaser Instabilities. World Scientific, Singapore

    Google Scholar 

  7. Saleh BEA, Teich MC (1991) Fundamentals ofPhotonics. Wiley, New York

    Google Scholar 

  8. Svanberg S (1992) Atomic and MolecularSpectroscopy, 2nd edn. Springer, Berlin

    Google Scholar 

  9. Demtröder W (1996) Laser Spetroscopy, 2ndedn. Springer, Berlin

    Google Scholar 

  10. Yariv A (1997) Optical Electronics in ModernCommunications, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  11. Koechner W (1996) Solid State Laser Engineering,4th edn. Springer, Berlin

    Google Scholar 

  12. Haken H (1985) Light. In: Laser Dynamics, vol 2. North-Holland, Amsterdam

    Google Scholar 

  13. Boyd RW, Raymer MG, Narducci LM (eds) (1986) OpticalInstabilities. In: Proceedings of the International Meeting onInstabilities and Dynamics of Lasers and Nonlinear Optical Systems,University of Rochester, 18–21 June, 1985. Cambridge UniversityPress, Cambridge

    Google Scholar 

  14. Abraham NB, Mandel P, Narducci LM (1988)Dynamical instabilities and pulsations in lasers. In: Wolf E (ed)Progress in Optics, vol XXV, ch. I. North-Holland, Amsterdam,pp 1–190

    Google Scholar 

  15. Robins WP (1982) Phase Noise in Signal Sources.Peter Peregrinus, London

    Google Scholar 

  16. Weiss CO, Vilaseca R (1991) Dynamics ofLasers. Weinheim, New York

    Google Scholar 

  17. Riehle F (2004) Frequency Standards. Wiley-VCH,Weinheim

    Google Scholar 

  18. Kärtner FX, Morgner U, Schibli T, Ell R, Haus HA,Fujimoto JG, Ippen EP (2004) Few-Cycle Pulses Directly froma Laser. In: Topics in Applied Physics, vol 95. Springer, Berlin,pp 73–136

    Google Scholar 

  19. Ye J, Cundiff ST (eds) (2005) Femtosecond OpticalFrequency Comb Technology: Principle, Operation and Application.Springer, New York

    Google Scholar 

  20. Jackson JD (1999) Classical Electrodynamics, 3rdedn. Wiley, New York

    MATH  Google Scholar 

  21. Slichter CP (1963) Principles of MagneticResonance. Harper and Row, New York

    Google Scholar 

  22. HechtE (2002) Optics, 4th edn. Addison-Wesley, SanFrancisco

    Google Scholar 

  23. van Tartwijk GHM, Agrawal GP (1998) Laserinstabilities: a modern perspective. Prog Quant Elect 22:43–122

    ADS  Google Scholar 

  24. Dunsmuir R (1961) Theory of relaxationoscillations in optical masers. J Electron Contr 10:453–458

    Google Scholar 

  25. Begon M, Harper JL, Townsend CR (1986) Ecology:Individuals, Populations, and Communities. Sinauer Assoc, Sunderland

    Google Scholar 

  26. Davis HT (1962) Introduction to NonlinearDifferential and Integral Equations. Dover, New York

    MATH  Google Scholar 

  27. Kaplan JI, Zier R (1962) Model for transientoscillations in a three-level optical maser. J Appl Phys 33:2372–2375

    ADS  Google Scholar 

  28. Bostick HA, O'Connor JR (1962) Infrared oscillationsfrom CaF2:U+3 and BaF2:U+3 masers. Proc IRE50:219–220

    Google Scholar 

  29. Tang CL (1963) On maser rate equations and transientoscillations. J Appl Phys 34:2935–2940

    ADS  Google Scholar 

  30. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    ADS  Google Scholar 

  31. Gleick J (1987) Chaos. Penguin, New York

    MATH  Google Scholar 

  32. Schuster HG, Just W (2005) Deterministic Chaos,4th edn. Wiley-VCH, Weinheim

    MATH  Google Scholar 

  33. Haken H (1975) Analogy between higher instabilitiesin fluids and lasers. Phys Lett 53A:77–78

    ADS  Google Scholar 

  34. Casperson LW (1978) Spontaneous coherentpulsations in laser oscillators. IEEE J Quantum ElectronQE-14:756–761

    ADS  Google Scholar 

  35. Mayr M, Risken H, Vollmer HD (1981) Periodic and chaoticbreathing of pulses in a ringlaser. Optics Comm 36:480–482

    ADS  Google Scholar 

  36. Weiss CO, Klische W (1984) On observability of Lorenzinstabilities in lasers. Optics Comm 51:47–48

    ADS  Google Scholar 

  37. Lugiato LA, Narducci LM, Bandy DK, Pennise CA(1983) Breathing, spiking and chaos in a laser with injected signal.Opt Commun 46:64–68

    ADS  Google Scholar 

  38. Weiss CO, Godone A, Olafsson A (1983) Routes tochaotic emission in a cw He-Ne laser. Phys Rev A 28:892–895

    ADS  Google Scholar 

  39. Arrechi FT, Lippi GL, Puccioni GP, Tredicce JR (1984)Deterministic chaos in laser with injected signal. Optics Comm51:308–314

    ADS  Google Scholar 

  40. Shih M, Milonni PW, Ackerhalt JR (1985) Modelinglaser instabilities and chaos. J Opt Soc Amer B 2:130–135

    ADS  Google Scholar 

  41. Narducci LM, Sadiky H, Lugiato LA, Abraham NB (1985)Experimentally accessible periodic pulsations of a single-modehomogeneously broadened laser (the Lorenz model). Optics Comm 55:370

    ADS  Google Scholar 

  42. Weiss CO, Brock J (1986) Evidence for Lorenz-type chaosin a laser. Phys Rev Lett 57:2804–2806

    ADS  Google Scholar 

  43. Pujol J, Laguarta F, Vilaseca R, Corbalán R (1988)Influence of pump coherence on the dynamic behavior of a laser. J OptSoc Amer B 5:1004–1010

    Google Scholar 

  44. Lauterborn W, Steinhoff R (1988) Bifurcation structureof a laser with pump modulation. J Opt Soc Amer B 5:1097–1104

    ADS  Google Scholar 

  45. Brunner W, Fischer R, Paul H (1988) Time evolution ofthe total electric-field strength in multimode lasers. J Opt Soc AmerB 5:1139–1143

    ADS  Google Scholar 

  46. Khanin YI (1988) Mechanisms of nonstationary behavior ofsolid-state lasers. J Opt Soc Amer B 5:889–898

    ADS  Google Scholar 

  47. Abraham NB, Allen UA, Peterson E, Vicens A, Vilaseca R,Espinosa V, Lippi GL (1995) Structural similarities and differencesamong attractors and their intensity maps in the Laser-Lorenzmodel. Optics Comm 117:367–384

    ADS  Google Scholar 

  48. Smith CP, Dykstra R (1996) Observation in the two-levelspatial Maxwell-Bloch model of the anomalously large first peak asseen in experimental Lorenz-like spiral chaos from the 15NH3laser. Optics Comm 129:69–74

    ADS  Google Scholar 

  49. Lauterborn W, Kurz T (2003) Coherent Optics, 2ndedn. Springer, Berlin

    Google Scholar 

  50. Mørk J, Mark J, Tromborg B (1990) Route to chaos andcompetition between relaxation oscillations for a semiconductor laserwith optical feedback. Phys Rev Lett 65:1999–2002

    Google Scholar 

  51. Hentschel M, Kienberger R, Spielmann C, ReiderGA, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F(2001) Attosecond metrology. Nature 414:509–513

    ADS  Google Scholar 

  52. Diels J-C, Rudolf W (1996) Ultrashort Laser PulsePhenomena. Academic Press, San Diego

    Google Scholar 

  53. Scott A (2003) Nonlinear Science; Emergence andDynamics of Coherent Structures, 2nd edn. Oxford University Press,Oxford

    MATH  Google Scholar 

  54. Korteweg DJ, deVries G (1895) On the change of form oflong waves advancing in a rectangular canal, and on a new type of longstationary waves. Philos Mag Ser 5 39:422–443

    Google Scholar 

  55. Russell JS (1838) Report of the committee onwaves. Report of the 7th Meeting of the British Association for theAdvancement of Science, pp 417–496

    Google Scholar 

  56. Lamb GL Jr (1980) Elements of Soliton Theory. Wiley, New York

    MATH  Google Scholar 

  57. Ablowitz MJ, Segur H (1981) Solitons and the InverseScattering Transform. Society for Industrial and Applied Mathematics,Philadelphia

    MATH  Google Scholar 

  58. Zabusky NJ, Kruskal MD (1965) Interaction of“solitons in a collisionless plasma and the recurrence of initialstates”. Phys Rev Lett 15:240–243

    ADS  MATH  Google Scholar 

  59. Scott AC, Chu FYF, McLaughlin DW (1973) Thesoliton – a new concept applied science. Proc IEEE 61:1443–1483

    MathSciNet  ADS  Google Scholar 

  60. Hasegawa A, Tappert F (1973) Transmission of stationarynonlinear optical pulses in dispersive dielectric fibers. I. Anonalousdispersion. Appl Phys Lett 23:142–144

    ADS  Google Scholar 

  61. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimentalobservation of picosecond pulse narrowing and solitons in opticalfibers. Phys Rev Lett 45:1095–1098

    ADS  Google Scholar 

  62. Haus HA (1975) Theory of mode locking with a fastsaturable absorber. J Appl Phys 46:3049–3058

    ADS  Google Scholar 

  63. Haus HA, Fujimoto JG, Ippen EP (1991) Structures foradditive pulse modelocking. J Opt Soc Amer B 8:2068–2076

    ADS  Google Scholar 

  64. Haus HA, Fujimoto JG, Ippen EP (1992) Analytic theory ofadditive pulse and Kerr lens mode locking. IEEE J Quantum Electron28:2086–2096

    ADS  Google Scholar 

  65. Haus HA, Mecozzi A (1993) Noise of mode-lockedlasers. IEEE J Quantum Electron 29:983–996

    ADS  Google Scholar 

  66. Kapitula T, Kutz JN, Sandstede B (2002) Stability ofpulses in the master mode-locking equation. J Opt Soc Amer B19:740–746

    ADS  Google Scholar 

  67. Menyuk CR, Wahlstrand JK, Willits J, Smith RP, SchibliTR, Cundiff ST (2007) Pulse dynamics in mode-locked lasers:relaxation oscillations and frequency pulling. Opt Express15:6677–6689

    ADS  Google Scholar 

  68. Papoulis A (1965) Probability, Random Variables,and Stochastic Processes. McGraw-Hill, New York

    MATH  Google Scholar 

  69. Cooper GR, McGillem CD (1971) ProbabilisticMethods of Signal and System Analysis, 2nd edn. Holt, Rinehart andWinston, Fort Worth

    Google Scholar 

  70. Schawlow AL, Townes CH (1958) Infraredand optical masers. Phys Rev 112:1940–1949

    ADS  Google Scholar 

  71. Salomon C, Hils D, Hall JL (1988) Laserstabilization at the millihertz level. J Opt Soc Amer B 5:1576–1587

    ADS  Google Scholar 

  72. Eichenseer M, von Zanthier J, Walther H (2005)Common-mode-free frequency comparison of lasers with relativefrequency stability at the millihertz level. Opt Lett 30:1662–1664

    ADS  Google Scholar 

  73. Notcutt M, Ma L-S, Hall JL (2005) Simple and compact 1?Hzlaser system via an improved mounting configuration of a referencecavity. Opt Lett 30:1815–1817

    ADS  Google Scholar 

  74. Loudon R (1973) The Quantum Theory of Light. OxfordUniversity Press, Oxford

    Google Scholar 

  75. Kingston RH (1995) Optical Sources, Detectors,and Systems. Academic Press, San Diego

    Google Scholar 

  76. Feller W (1957) An Introduction to Probability Theoryand Its Applications. Wiley, New York, p 168

    MATH  Google Scholar 

  77. Gradshteyn IS, Ryzhik IM (1980) Table of Integrals,Series, and Products, corrected and enlarged 4th edn. Academic Press, New York

    Google Scholar 

  78. Abramowitz M, Stegun IA (eds) (1965)Handbook of Mathematical Functions, 55. US Department of Commerce,National Bureau of Standards, Washington

    Google Scholar 

  79. Scott RP, Langrock C, Kolner BH (2001) Highdynamic range laser amplitude and phase noise measurement techniques.IEEE J Select Topics Quant Electron 7:641–655

    Google Scholar 

  80. Kluge J, Wiechert D, Linde DV (1984) Fluctuationsin synchronously modelocked dye lasers. Opt Commun 51:271–277

    ADS  Google Scholar 

  81. Helbing FW, Steinmeyer G, Keller U, Windeler RS, StengerJ, Telle HR (2002) Carrier-envelope offset dynamics of modelockedlasers. Opt Lett 27:194–196

    ADS  Google Scholar 

  82. Scott RP, Kolner BH, Langrock C, Byer RL, Fejer MM(2003) Ti: sapphire laser pump-noise transfer function. In:Proceedings of the Conference on Lasers and Electro-optics, PaperCFB2, Baltimore

    Google Scholar 

  83. Kolner BH, Scott RP, Langrock C (2003) Laser phasenoise degradation from thermal effects due to pump powerfluctuations. In: Proceedings of the 2003 IEEE/LEOS Summer TopicalMeeting on Photonic Time/Frequency Measurement and Control, PaperTuC3.3, Vancouver, Institute of Electrical andElectronics Engineers, 14–16 July

    Google Scholar 

  84. Mulder TD, Scott RP, Baker KA, Kolner BH (2007)Characterization of the complex noise transfer function ofa modelocked Ti:sapphire laser. In: Conference on Lasers andElectro-Optics (CLEO 2007), Baltimore, Paper JThD38

    Google Scholar 

  85. Scott RP, Mulder TD, Baker KA, Kolner BH (2007)Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasersin terms of a complex noise transfer function. Opt Express15:9090–9095

    ADS  Google Scholar 

  86. Weber R, Neuenschwander B, Donald MM, Roos MB,Weber HP (1998) Cooling schemes for longitudinally diode laser-pumpedNd:YAG rods. IEEE J Quantum Electron 34:1046–1053

    ADS  Google Scholar 

  87. Kolner BH (2008) Dynamic temperature distribution incylindrical laser rods with time-varying pump sources. (inpreparation)

    Google Scholar 

  88. Kolner BH, Mulder TD, Scott RP (2008) Laser noisemodulation transfer functions. (in preparation)

    Google Scholar 

  89. Mulder TD, Scott RP, Kolner BH (2008)Amplitude and envelope phase noise of a modelocked laser predictedfrom its noise transfer function and the pump noise power spectrum.Opt Express 16(18):14186–14191

    ADS  Google Scholar 

  90. Bender CM, Orszag SA (1978) Advanced MathematicalMethods for Scientists and Engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  91. Haus HA, Lai Y (1990) Quantum theory of solitonsqueezing: a linearized approach. J Opt Soc Amer B 7:386–392

    ADS  Google Scholar 

  92. Haberman R (1987) Elementary Applied PartialDifferential Equations with Fourier Series and Boundary ValueProblems, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  93. Kuizenga DJ, Siegman AE (1970) FM and AM mode locking ofthe homogeneous laser – Part I: Theory. IEEE J Quantum ElectronQE-6:694–708

    ADS  Google Scholar 

  94. Kuizenga DJ, Siegman AE (1970) FM and AM mode locking ofthe homogeneous laser – Part II: Experimental results in a Nd:YAG laserwith internal FM modulation. IEEE J Quantum Electron QE-6:709–715

    ADS  Google Scholar 

  95. Scavennec A (1976) Mismatch effects in synchronouspumping of the continuously operated mode-locked laser. Optics Comm17:14–17

    ADS  Google Scholar 

  96. Zheng JP, Sen U, Benenson DM, Kwok HS (1986) Observationof periodicity multiplication in a synchronously pumped dye laser.Opt Lett 11:632–634

    ADS  Google Scholar 

  97. MacFarlane DL, Casperson LW (1987) Pulse-traininstabilities in a mode-locked argon laser: Experimental studies. J Opt Soc Amer B 4:1777–1780

    ADS  Google Scholar 

  98. MacFarlane DL, Casperson LW, Tovar AA (1988) Spectralbehavior and pulse train instabilities of a synchronously pumpedmode-locked dye laser. J Opt Soc Amer B 5:1144–1152

    Google Scholar 

  99. Scott RP, Bennett CV, Kolner BH (1997) AM andhigh-harmonic FM modelocking. Appl Opt 36:5908–5912

    ADS  Google Scholar 

  100. Valdmanis JA, Fork RL, Gordon JP (1985) Generation ofoptical pulses as short as 27 femtoseconds directly from a laserbalancing self-phase modulation, group-velocity dispersion, saturableabsorption, and saturable gain. Opt Lett 10:131–133

    ADS  Google Scholar 

  101. Avramopoulos H, French PMW, Williams JAR, New GHC,Taylor JR (1988) Experimental and theoretical studies of complex pulseevolutions in a passively mode-locked ring dye laser. IEEE J QuantumElectron 24:1884–1892

    ADS  Google Scholar 

  102. Spence DE, Kean PN, Sibbett W (1991) 60-fsec pulsegeneration from a self-modelocked Ti-sapphirelaser. Opt Lett16:42–44

    Google Scholar 

  103. Christov IP, Kapteyn HC, Murnane MM, Huang C-P, Zhou J(1995) Space-time focusing of femtosecond pulses in a Ti:sapphirelaser. Opt Lett 20:309–311

    ADS  Google Scholar 

  104. Kalosha VP, Müller M, Herrmann J, Gatz S (1998)Spatiotemporal model of femtosecond pulse generation in Kerr-lensmode-locked solid-state lasers. J Opt Soc Amer B 15:535–550

    Google Scholar 

  105. Christov IP, Stoev VD (1998) Kerr-lens mode-lockedlaser model: role of space time effects. J Opt Soc Amer B15:1960–1966

    ADS  Google Scholar 

  106. Jirauschek C, Kärtner FX, Morgner U (2003)Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-lockedlasers. J Opt Soc Amer B 20:1356–1368

    Google Scholar 

  107. Sergeev AM, Vanin EV, Wise FW (1997) Stability ofpassively modelocked lasers with fast saturable absorbers. Optics Comm140:61–64

    ADS  Google Scholar 

  108. Liu Y-M, Prucnal PR (1993) Slow amplitude modulation inthe pulse train of a self-modelocked Ti:sapphire laser. IEEE JQuantum Electron 29:2663–2669

    ADS  Google Scholar 

  109. Sucha G, Bolton SR, Weiss S, Chemla DS (1995) Perioddoubling and quasi-periodicity in additive-pulse mode-lockedlasers. Opt Lett 20:1794–1796

    ADS  Google Scholar 

  110. Sánchez LM, Hnilo AA (2001) Description of Kerr lensmode-locked lasers with Poincaré maps in the complex plane. OpticsComm 199:189–199

    Google Scholar 

  111. Hall JL, Ye J, Diddams SA, Ma L-S, Cundiff ST, Jones DJ(2001) Ultrasensitive spectroscopy, the ultrastable lasers, theultrafast lasers, and the seriously nonlinear fiber: a new alliancefor physics and metrology. IEEE J Quantum Electron 37:1482–1492

    Google Scholar 

  112. Holzwarth R, Zimmermann M, Udem T, Hänsch TW (2001)Optical clockworks and the measurement of laser frequencies witha mode-locked frequency comb. IEEE J Quantum Electron 37:1493–1501

    Google Scholar 

  113. http://nobelprize.org/physics/laureates/2005/

  114. Cundiff ST, Ye J (2003) Femtosecond optical frequencycombs. Rev Modern Phys 75:325–342

    ADS  Google Scholar 

  115. Helbing FW, Steinmeyer G, Stenger J, Telle HR, Keller U(2002) Carrier-envelope-offset dynamics and stabilization offemtosecond pulses. Appl Phys B 74:S34–S42

    Google Scholar 

  116. Ranka J, Windeler R, Stentz A (2000) Visible continuumgeneration in air-silica microstructure optical fibers with anomalousdispersion at 800 nm. Opt Lett 25:25–27

    ADS  Google Scholar 

  117. Ranka JK, Windeler RS, Stentz AJ (2000) Opticalproperties of high-delta air silica microstructure optical fibers. OptLett 25:796–798

    ADS  Google Scholar 

  118. Xu L, Spielmann C, Poppe A, Brabec T, Krausz F, HänschTW (1996) Route to phase control of ultrashort light pulses. Opt Lett21:2008–2010

    Google Scholar 

  119. Matos L, Mücke OD, Jian C, Kärtner FX (2006)Carrier-envelope phase dynamics and noise analysis inoctave-spanning Ti:sapphire lasers. Opt Express 14:2497–2511

    Google Scholar 

  120. Stenger J, Talle HR (2000) Intensity-induced modeshift in a femtosecond laser by a change in the nonlinear index ofrefraction. Opt Lett 25:1553–1555

    ADS  Google Scholar 

  121. Holman KW, Jones RJ, Marian A, Cundiff ST, Ye J (2003)Detailed studies and control of intensity related dynamics offemtosecond frequency combs from mode-locked Ti-sapphirelasers. IEEE J Select Topics Quantum Electron 9:1018

    Google Scholar 

  122. Kutz JN (1998) Modelocking pulse dynamics in fiberlasers. In: SPIE Conference on Physics and Simulation ofOptoelectronics Devices VI, vol 3283, (San Jose, CA). SPIE,pp 639–651

    Google Scholar 

  123. Washburn BR, Swan WC, Newberry NR (2005) Responsedynamics of the frequency comb output from a femtosecond fiberlaser. Opt Lett 13:10622–10633

    Google Scholar 

  124. Cundiff ST (2005) Soliton dynamics in mode-lockedlasers. Lecture notes in physics, vol 661. Springer, Berlin, pp 183–206

    Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to many colleagues, friends andteachers who have influenced me over the years. I wish to thankDr. Steven T. Cundiff and Professor Curtis R. Menyuk for theirtremendous contributions and stimulating conversations regardingtheir recent efforts in understanding this vast field. To Dr. JohnL. Hall I owe a great and hearty thanks for all of his pioneeringwork, for his patience as a sounding board and his uniqueperspective on physics. Thanks also to Professors AnthonyE. Siegman, Stephen E. Harris, Robert L. Byer, and especially, Alwyn C. Scott, from whom I learned much. Finally, on behalf of my groupat the University of California, I wish to thank Robert Temple, TomFaulkner and Roger Muat of Agilent Technologies (formerlyHewlett-Packard Company) for numerous donations and countless hoursof tutoring.

This work was supported in part by the David and Lucile PackardFoundation and the National Science Foundation under grantECS-0622235.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Kolner, B.H. (2009). Noise and Stability in Modelocked Soliton Lasers. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_360

Download citation

Publish with us

Policies and ethics