Skip to main content

Non-linear Dynamics, Symmetry and Perturbation Theory in

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 226 Accesses

Definition of the Subject

Given a differential equation or system of differential equations ? with independent variables \( { \xi^a \in \Xi \subseteq {\mathbf R}^q } \) and dependentvariables \( { x^i \in M \subseteq {\mathbf R}^p }\), a symmetry of ? is an invertible transformation of the extended phase space \( { \widetilde{M} = \Xi \times M } \) into itself which mapssolutions of ? into (generally, different) solutions of ?.

The presence of symmetries is a non-generic feature; correspondingly, equations with symmetry have some special features. These can beused to obtain information about the equation and its solutions, and sometimes allow one to obtain explicit solutions.

The same applies when we consider a perturbative approach to the equations: taking into account the presence of symmetries guarantees theperturbative expansion has certain specific features (e.?g. some terms are not allowed) and hence allows one to deal with simplified expansions andequations; thus this approach...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Perturbation theory :

A theory aiming at studying solutions of a differential equation (or system thereof), possibly depending on external parameters, near a known solution and/or for values of external parameters near to those for which solutions are known.

Dynamical system :

A system of first order differential equations \( { \text{d} x^i / \text{d} t = f^i (x,t) } \), where \( { x \in M } \), \( { t \in {\mathbf R} } \). The space M is the phase space for the dynamical system, and \( { \widetilde{M} = M \times {\mathbf R} } \) is the extended phase space. When f is smooth we say the dynamical system is smooth, and for f independent of t, we speak of an autonomous dynamical system.

Symmetry :

An invertible transformation of \( { \widetilde{M} } \) mapping solutions into solutions. If the dynamical system is smooth, smoothness will also be required on symmetry transformations; if it is autonomous, it will be natural to consider transformations of M rather than of \( { \widetilde{M} } \).

Symmetry reduction :

A method to reduce the equations under study to simpler ones (e.?g. with less dependent variables, or of lower degree) by exploiting their symmetry properties.

Normal form :

A convenient form to which the system of differential equations under study can be brought by means of a sequence of change of coordinates. The latter are in general well defined only in a subset of M, possibly near a known solution for the differential equations.

Further normalization :

A procedure to further simplify the normal form for a dynamical system, in general making use of certain degeneracies in the equations to be solved in the course of the normalization procedure.

Bibliography

  1. Abenda S, Gaeta G, Walcher S (eds) (2003) Symmetry and PerturbationTheory – SPT2002. In: Proceedings of Cala Gonone workshop, 19–26 May 2002. World Scientific, Singapore

    Google Scholar 

  2. Abud M, Sartori G (1983) The geometry of spontaneous symmetry breaking. Ann Phys150:307–372

    MathSciNet  ADS  MATH  Google Scholar 

  3. Aleekseevskij DV, Vinogradov AM, Lychagin VV (1991) Basic ideas and concepts ofdifferential geometry. In: Gamkrelidze RV (ed) Encyclopaedia of Mathematical Sciences vol 28 – Geometry I. Springer,Berlin

    Google Scholar 

  4. Arnal D, Ben Ammar M, Pinczon G (1984) The Poincaré–Dulac theorem fornonlinear representations of nilpotent Lie algebras. Lett Math Phys 8:467–476

    MathSciNet  ADS  MATH  Google Scholar 

  5. Arnold VI (1974) Equations differentielles ordinaires. MIR, Moscow, 2nd edn1990. Arnold VI (1992) Ordinary Differential Equations. Springer, Berlin

    Google Scholar 

  6. Arnold V (1976) Les méthodes mathématiques de la mecanique classique. MIR,Moscow. Arnold VI (1983, 1989) Mathematical methods of classical Mechanics. Springer, Berlin

    Google Scholar 

  7. Arnold V (1980) Chapitres supplementaires de la théorie des equationsdifferentielles ordinaires. MIR, Moscow. Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer,Berlin

    Google Scholar 

  8. Arnold VI, Il'yashenko YS (1988) Ordinary differential equations. In: Anosov DV,Arnold VI (eds) Encyclopaedia of Mathematical Sciences vol 1 – Dynamical Systems I, pp 1–148. Springer,Berlin

    Google Scholar 

  9. Arnold VI, Kozlov VV, Neishtadt AI (1993) Mathematical aspects of classical andcelestial mechanics. In: Arnold VI (ed) Encyclopaedia of Mathematical Sciences vol 3 – Dynamical Systems III, 2nd edn,pp 1–291. Springer, Berlin

    Google Scholar 

  10. Baider A (1989) Unique normal form for vector fields andHamiltonians. J Diff Eqs 78:33–52

    MathSciNet  MATH  Google Scholar 

  11. Baider A, Churchill RC (1988) Uniqueness and non-uniqueness of normalforms for vector fields. Proc R Soc Edinburgh A 108:27–33

    MathSciNet  MATH  Google Scholar 

  12. Baider A, Sanders J (1992) Further reduction of the Takens-Bogdanov normalform. J Diff Eqs 99:205–244

    MathSciNet  MATH  Google Scholar 

  13. Bakri T, Nabergoj R, Tondl A, Verhulst F (2004) Parametric excitation innon-linear dynamics. Int J Nonlin Mech 39:311–329

    MathSciNet  MATH  Google Scholar 

  14. Bambusi D, Gaeta G (eds) (1997) Symmetry and Perturbation Theory. In:Proceedings of Torino Workshop, ISI, December 1996. GNFM–CNR, Roma

    Google Scholar 

  15. Bambusi D, Gaeta G (2002) On persistence of invariant tori and a theoremby Nekhoroshev. Math Phys El J 8:1–13

    MathSciNet  Google Scholar 

  16. Bambusi D, Cicogna G, Gaeta G, Marmo G (1998) Normal forms, symmetry, andlinearization of dynamical systems. J Phys A Math Gen 31:5065–5082

    MathSciNet  ADS  MATH  Google Scholar 

  17. Bambusi D, Gaeta G, Cadoni M (eds) (2001) Symmetry and PerturbationTheory – SPT2001. In: Proceedings of the international conference SPT2001, Cala Gonone, 6-13 May 2001. World Scientific,Singapore

    Google Scholar 

  18. Bargmann V (1961) On a Hilbert space of analytic functions and anassociated integral transform. Comm Pure Appl Math 14:187–214

    MathSciNet  MATH  Google Scholar 

  19. Baumann G (2000) Symmetry analysis of differential equations withMathematica. Springer, New York

    MATH  Google Scholar 

  20. Belitskii GR (1978) Equivalence and normal forms of germs of smoothmappings. Russ Math Surveys 33(1):107–177

    MathSciNet  ADS  MATH  Google Scholar 

  21. Belitskii GR (1981) Normal forms relative to the filtering action ofa group. Trans Moscow Math Soc 40(2):1–39

    Google Scholar 

  22. Belitskii GR (1987) Smooth equivalence of germs of vector fields witha single eigenvalue or a pair of purely imaginary eigenvalues. Funct Anal Appl 20:253–259

    Google Scholar 

  23. Belitskii GR (2002) \( { \mathcal{C}^\infty } \)-Normal forms of local vector fields. Acta Appl Math70:23–41

    MathSciNet  MATH  Google Scholar 

  24. Belmonte C, Boccaletti D, Pucacco G (2006) Stability of axial orbits ingalactic potentials. Cel Mech Dyn Astr 95:101–116

    MathSciNet  ADS  MATH  Google Scholar 

  25. Benettin G, Galgani L, Giorgilli A (1984) A proof of the Kolmogorovtheorem on invariant tori using canonical transformations defined by the Lie method. Nuovo Cimento B 79:201–223

    MathSciNet  ADS  Google Scholar 

  26. Bluman GW, Anco SC (2002) Simmetry and integration methods for differentialequations. Springer, Berlin

    Google Scholar 

  27. Bluman GW, Kumei S (1989) Symmetries and differential equations. Springer,Berlin

    MATH  Google Scholar 

  28. Bogoliubov NN, Mitropolsky VA (1961) Asymptotic methods in the theory ofnonlinear oscillations. Hindustan, New Delhi. (1962) Méthodes asymptothiques dans la théorie des oscillations non-linéaires. Gauthier-Villars,Paris

    Google Scholar 

  29. Broer HW (1979) Bifurcations of singularities in volume preserving vectorfields. Ph?D Thesis, Groningen

    Google Scholar 

  30. Broer HW (1981) Formal normal form theorems for vector fields and someconsequences for bifurcations in the volume preserving case. In: Rand DA, Young LS (eds) Dynamical systems and turbulence. it Lect Notes Math898. Springer, Berlin

    Google Scholar 

  31. Broer HW, Takens F (1989) Formally symmetric normal forms and genericity. DynRep 2:39–59

    MathSciNet  Google Scholar 

  32. Bryuno AD (1971) Analytical form of differential equations I. Trans MoscowMath Soc 25:131–288

    Google Scholar 

  33. Bryuno AD (1971) Analytical form of differential equations II. Trans MoscowMath Soc 26:199–239

    Google Scholar 

  34. Bryuno AD (1988) The normal form of a Hamiltonian system. Russ Math Sur43(1):25–66

    MathSciNet  MATH  Google Scholar 

  35. Bryuno AD (1989) Local Methods in the Theory of DifferentialEquations. Springer, Berlin

    Google Scholar 

  36. Bryuno AD, Walcher S (1994) Symmetries and convergence of normalizingtransformations. J Math Anal Appl 183:571–576

    MathSciNet  MATH  Google Scholar 

  37. Cantwell BJ (2002) Introduction to Symmetry Analysis. Cambridge UniversityPress, Cambridge

    MATH  Google Scholar 

  38. Carinena JF, Grabowski J, Marmo G (2000) Lie-Scheffers systems:a geometric approach. Bibliopolis, Napoli

    MATH  Google Scholar 

  39. Chen G, Della Dora J (2000) Further reductions of normal forms for dynamicalsystems. J Diff Eqs 166:79–106

    MATH  Google Scholar 

  40. Chern SS, Chen WH, Lam KS (1999) Lectures on differential geometry. WorldScientific, Singapore

    MATH  Google Scholar 

  41. Chossat P (2002) The reduction of equivariant dynamics to teh orbit space forcompact group actions. Acta Appl Math 70:71–94

    MathSciNet  MATH  Google Scholar 

  42. Chossat P, Lauterbach R (1999) Methods in equivariant bifurcations anddynamical systems with applications. World Scientific, Singapore

    Google Scholar 

  43. Chow SN, Hale JK (1982) Methods of bifurcation theory. Springer,Berlin

    MATH  Google Scholar 

  44. Chow SN, Li C, Wang D (1994) Normal forms and bifurcations of planar vectorfields. Cambridge University Press, Cambridge

    Google Scholar 

  45. Chua LO, Kokubu H (1988) Normal forms for nonlinear vector fields Part I:theory. IEEE Trans Circ Syst 35:863–880

    MathSciNet  MATH  Google Scholar 

  46. Chua LO, Kokubu H (1989) Normal forms for nonlinear vector fields Part II:applications. IEEE Trans Circ Syst 36:851–870

    MathSciNet  Google Scholar 

  47. Churchill RC, Kummer M, Rod DL (1983) On averaging, reduction and symmetry inHamiltonian systems. J Diff Eqs 49:359–414

    Google Scholar 

  48. Cicogna G, Gaeta G (1994) Normal forms and nonlinear symmetries. J Phys A27:7115–7124

    MathSciNet  ADS  MATH  Google Scholar 

  49. Cicogna G, Gaeta G (1994) Poincaré normal forms and Lie pointsymmetries. J Phys A 27:461–476

    MathSciNet  ADS  MATH  Google Scholar 

  50. Cicogna G, Gaeta G (1994) Symmetry invariance and center manifolds indynamical systems. Nuovo Cim B 109:59–76

    MathSciNet  ADS  Google Scholar 

  51. Cicogna G, Gaeta G (1999) Symmetry and perturbation theory in nonlineardynamics. Springer, Berlin

    MATH  Google Scholar 

  52. Cicogna G, Walcher S (2002) Convergence of normal form transformations: therole of symmetries. Acta Appl Math 70:95–111

    MathSciNet  MATH  Google Scholar 

  53. Courant R, Hilbert D (1962) Methods of Mathematical Physics. Wiley, New York;(1989)

    MATH  Google Scholar 

  54. Cushman R, Sanders JA (1986) Nilpotent normal forms and representation theoryof \( { sl2,R } \). In: Golubitsky M,Guckenheimer J (eds) Multi-parameter bifurcation theory. Contemp Math 56, AMS, Providence,

    Google Scholar 

  55. Crawford JD (1991) Introduction to bifurcation theory. Rev Mod Phys63:991–1037

    MathSciNet  ADS  Google Scholar 

  56. Crawford JD, Knobloch E (1991) Symmetry and symmetry-breakingbifurcations in fluid dynamics. Ann Rev Fluid Mech 23:341–387

    MathSciNet  ADS  Google Scholar 

  57. Degasperis A, Gaeta G (eds) (1999) Symmetry and Perturbation TheoryII – SPT98. In: Proceedings of Roma Workshop, Universitá La Sapienza, December 1998. World Scientific, Singapore

    Google Scholar 

  58. Deprit A (1969) Canonical transformation depending on a smallparameter. Celest Mech 1:12–30

    MathSciNet  ADS  MATH  Google Scholar 

  59. de Zeeuw T, Merritt D (1983) Stellar orbits in a triaxial galaxy I Orbitsin the plane of rotation. Astrophys J 267:571–595

    MathSciNet  ADS  Google Scholar 

  60. Elphick C, Tirapegui E, Brachet ME, Coullet P, Iooss G (1987) A simpleglobal characterization for normal forms of singular vector fields. Physica D 29:95–127. (1988) Addendum. Physica D32:488

    MathSciNet  ADS  MATH  Google Scholar 

  61. Fassò F (1990) Lie series method for vector fields and Hamiltonianperturbation theory. ZAMP 41:843–864

    Google Scholar 

  62. Fassò F, Guzzo M, Benettin G (1998) Nekhoroshev stability of ellipticequilibria of Hamiltonian systems. Comm Math Phys 197:347–360

    Google Scholar 

  63. Field MJ (1989) Equivariant bifurcation theory and symmetrybreaking. J Dyn Dif Eqs 1:369–421

    MathSciNet  MATH  Google Scholar 

  64. Field MJ (1996) Lectures on bifurcations, dynamics and symmetry. Res NotesMath 356. Pitman, Boston

    Google Scholar 

  65. Field MJ (1996) Symmetry breaking for compact Lie groups. Mem AMS574:1–170

    Google Scholar 

  66. Field MJ, Richardson RW (1989) Symmetry breaking and the maximal isotropysubgroup conjecture for reflection groups. Arch Rat Mech Anal 105:61–94

    MathSciNet  MATH  Google Scholar 

  67. Field MJ, Richardson RW (1990) Symmetry breaking in equivariant bifurcationproblems. Bull Am Math Soc 22:79–84

    MathSciNet  MATH  Google Scholar 

  68. Field MJ, Richardson RW (1992) Symmetry breaking and branching patterns inequivariant bifurcation theory I. Arch Rat Mech Anal 118:297–348

    MathSciNet  MATH  Google Scholar 

  69. Field MJ, Richardson RW (1992) Symmetry breaking and branching patterns inequivariant bifurcation theory II. Arch Rat Mech Anal 120:147–190

    MathSciNet  MATH  Google Scholar 

  70. Fokas AS (1979) Generalized symmetries and constants of motion of evolutionequations. Lett Math Phys 3:467–473

    MathSciNet  ADS  MATH  Google Scholar 

  71. Fokas AS (1979) Group theoretical aspects of constants of motion and separablesolutions in classical mechanics. J Math Anal Appl 68:347–370

    MathSciNet  MATH  Google Scholar 

  72. Fokas AS (1980) A symmetry approach to exactly solvable evolutionequations. J Math Phys 21:1318–1326

    MathSciNet  ADS  MATH  Google Scholar 

  73. Fokas AS (1987) Symmetries and integrability. Stud Appl Math77:253–299

    MathSciNet  MATH  Google Scholar 

  74. Fokas AS, Gelfand IM (1996) Surfaces on Lie groups, Lie algebras, and theirintegrability. Comm Math Phys 177:203–220

    MathSciNet  ADS  MATH  Google Scholar 

  75. Fontich E, Gelfreich VG (1997) On analytical properties of normalforms. Nonlinearity 10:467–477

    MathSciNet  ADS  MATH  Google Scholar 

  76. Forest E, Murray D (1994) Freedom in minimal normal forms. Physica D74:181–196

    MathSciNet  ADS  MATH  Google Scholar 

  77. Fushchich WI, Nikitin AG (1987) Symmetries of Maxwell equations. Reidel,Dordrecht

    MATH  Google Scholar 

  78. Fushchich WI, Shtelen WM, Slavutsky SL (1989) Symmetry analysis and exactsolutions of nonlinear equations of mathematical physics. Naukova Dumka, Kiev

    MATH  Google Scholar 

  79. Gaeta G (1990) Bifurcation and symmetry breaking. Phys Rep189:1–87

    MathSciNet  ADS  MATH  Google Scholar 

  80. Gaeta G (1994) Nonlinear symmetries and nonlinear equations. Kluwer,Dordrecht

    MATH  Google Scholar 

  81. Gaeta G (1997) Reduction of Poincaré normal forms. Lett Math Phys42:103–114 & 235

    MathSciNet  MATH  Google Scholar 

  82. Gaeta G (1999) An equivariant branching lemma for relative equilibria. NuovoCim B 114:973–982

    ADS  Google Scholar 

  83. Gaeta G (1999) Poincaré renormalized forms. Ann IHP Phys Theor 70:461–514

    Google Scholar 

  84. Gaeta G (2001) Algorithmic reduction of Poincaré-Dulac normal forms and Liealgebraic structure. Lett Math Phys 57:41–60

    Google Scholar 

  85. Gaeta G (2002) Poincaré normal and renormalized forms. Acta Appl Math70:113–131

    MathSciNet  MATH  Google Scholar 

  86. Gaeta G (2002) Poincaré normal forms and simple compact Lie groups. Int J ModPhys A 17:3571–3587

    MathSciNet  ADS  MATH  Google Scholar 

  87. Gaeta G (2002) The Poincaré–Lyapounov–Nekhoroshev theorem. AnnPhys 297:157–173

    MathSciNet  ADS  MATH  Google Scholar 

  88. Gaeta G (2003) The Poincaré-Nekhoroshev map. J Nonlin Math Phys10:51–64

    MathSciNet  MATH  Google Scholar 

  89. Gaeta G (2006) Finite group symmetry breaking. In: Francoise JP, Naber G,Tsou ST (eds) Encyclopedia of Mathematical Physics. Kluwer, Dordrecht

    Google Scholar 

  90. Gaeta G (2006) Non-quadratic additional conserved quantities in Birkhoffnormal forms. Cel Mech Dyn Astr 96:63–81

    MathSciNet  ADS  MATH  Google Scholar 

  91. Gaeta G (2006) The Poincaré–Lyapounov–Nekhoroshev theorem forinvolutory systems of vector fields. Ann Phys NY 321:1277–1295

    MathSciNet  ADS  MATH  Google Scholar 

  92. Gaeta G, Marmo G (1996) Nonperturbative linearization of dynamicalsystems. J Phys A 29:5035–5048

    MathSciNet  ADS  MATH  Google Scholar 

  93. Gaeta G, Morando P (1997) Michel theory of symmetry breaking and gaugetheories. Ann Phys NY 260:149–170

    MathSciNet  ADS  MATH  Google Scholar 

  94. Gaeta G, Walcher S (2005) Dimension increase and splitting for Poincaré-Dulacnormal forms. J Nonlin Math Phys 12:S1327-S1342

    MathSciNet  Google Scholar 

  95. Gaeta G, Walcher S (2006) Embedding and splitting ordinary differentialequations in normal form. J Diff Eqs 224:98–119

    MathSciNet  MATH  Google Scholar 

  96. Gaeta G, Prinari B, Rauch S, Terracini S (eds) (2005) Symmetry andPerturbation Theory – SPT2004. In: Proceedings of Cala Gonone workshop, 30 May – 6 June 2004. World Scientific,Singapore

    Google Scholar 

  97. Gaeta G, Grosshans FD, Scheurle J, Walcher S (2008) Reduction andreconstruction for symmetric ordinary differentialequations. J Diff Eqs 244:1810–1839

    MathSciNet  MATH  Google Scholar 

  98. Gaeta G, Vitolo R, Walcher S (eds) (2007) Symmetry and PerturbationTheory – SPT2007. In: Proceedings of Otranto workshop, 2–9 June 2007. World Scientific, Singapore

    Google Scholar 

  99. Gallavotti G (1983) The elements of mechanics. Springer,Berlin

    MATH  Google Scholar 

  100. Giorgilli A (1988) Rigorous results on the power expansions for theintegrals of a Hamiltonian system near an elliptic equilibrium point. Ann IHP Phys Theor 48:423–439

    Google Scholar 

  101. Giorgilli A, Locatelli U (1997) Kolmogorov theorem and classicalperturbation theory. ZAMP 48:220–261

    MathSciNet  ADS  MATH  Google Scholar 

  102. Giorgilli A, Morbidelli A (1997) Invariant KAM tori and global stability forHamiltonian systems. ZAMP 48:102–134

    MathSciNet  ADS  MATH  Google Scholar 

  103. Giorgilli A, Zehnder E (1992) Exponential stability for time dependentpotentials. ZAMP 43:827–855

    MathSciNet  ADS  MATH  Google Scholar 

  104. Glendinning P (1994) Stability, instability and chaos: an introduction tothe theory of nonlinear differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  105. Golubitsky M, Stewart I, Schaeffer D (1988) Singularity and groups inbifurcation theory – vol II. Springer, Berlin

    Google Scholar 

  106. Gramchev T, Yoshino M (1999) Rapidly convergent iteration methods forsimultaneous normal forms of commuting maps. Math Z 231:745–770

    MathSciNet  MATH  Google Scholar 

  107. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems,and bifurcation of vector fields. Springer, Berlin

    Google Scholar 

  108. Gustavson FG (1964) On constructing formal integrals of a Hamiltoniansystem near an equilibrium point Astron J 71:670–686

    Google Scholar 

  109. Guzzo M, Fassò F, Benettin G (1998) On the stability of ellipticequilibria. Math Phys El J 4(1):16

    Google Scholar 

  110. Hamermesh M (1962) Group theory. Addison-Wesley, Reading; reprinted byDover, New York (1991)

    MATH  Google Scholar 

  111. Hanssmann H (2007) Local and semi-local bifurcations in Hamiltoniandynamical systems Results and examples. Springer, Berlin

    MATH  Google Scholar 

  112. Hermann R (1968) The formal linearization of a semisimple Lie algebraof vector fields about a singular point. Trans AMS 130:105–109

    MathSciNet  MATH  Google Scholar 

  113. Hoveijn I (1996) Versal deformations and normal forms for reversible andHamiltonian linear systems. J Diff Eq 126:408–442

    Google Scholar 

  114. Hoveijn I, Verhulst F (1990) Chaos in the 1:2:3 Hamiltonian normalform. Physica D 44:397–406

    MathSciNet  ADS  MATH  Google Scholar 

  115. Hydon PE (2000) Symmetry methods for differential equations. Cambridge UP,Cambridge

    MATH  Google Scholar 

  116. Ibragimov N (1992) Group analysis of ordinary differential equations and theinvariance principle in Mathematical Physics. Russ Math Surv 47(4):89–156

    Google Scholar 

  117. Il'yashenko YS, Yakovenko SY (1991) Finitely smooth normal forms of localfamilies of diffeomorphisms and vector fields. Russ Math Surv 46(1):1–43

    MathSciNet  MATH  Google Scholar 

  118. Iooss G, Adelmeyer M (1992) Topics in bifurcation theory andapplications. World Scientific, Singapore

    MATH  Google Scholar 

  119. Isham CJ (1999) Modern differential geometry for physicists. WorldScientific, Singapore

    MATH  Google Scholar 

  120. Kinyon M, Walcher S (1997) On ordinary differential equations admittinga finite linear group of symmetries. J Math Analysis Appl 216:180–196

    MathSciNet  MATH  Google Scholar 

  121. Kirillov AA (1976, 1984) Elements of the Theory ofRepresentations. Springer, Berlin

    Google Scholar 

  122. Kodama Y (1994) Normal forms, symmetry and infinite dimensional Lie algebrafor systems of ODE's. Phys Lett A 191:223–228

    MathSciNet  ADS  MATH  Google Scholar 

  123. Kokubu H, Oka H, Wang D (1996) Linear grading function and further reductionof normal forms. J Diff Eq 132:293–318

    MathSciNet  MATH  Google Scholar 

  124. Krasil'shchik IS, Vinogradov AM (1984) Nonlocal symmetries and the theory ofcoverings. Acta Appl Math 2:79–96

    MathSciNet  MATH  Google Scholar 

  125. Krasil'shchik IS, Vinogradov AM (1999) Symmetries and conservation laws fordifferential equations of mathematical physics. AMS, Providence

    MATH  Google Scholar 

  126. Kummer M (1971) How to avoid secular terms in classical and quantummechanics. Nuovo Cimento B 1:123–148

    MathSciNet  Google Scholar 

  127. Kummer M (1976) On resonant nonlinearly coupled oscillators with two equalfrequencies. Comm Math Phys 48:53–79

    MathSciNet  ADS  MATH  Google Scholar 

  128. Lamb J (1996) Local bifurcations in k-symmetric dynamical systems. Nonlinearity 9:537–557

    MathSciNet  ADS  MATH  Google Scholar 

  129. Lamb J (1998) k-symmetry and returnmaps of spacetime symmetric flows. Nonlinearity 11:601–630

    MathSciNet  ADS  MATH  Google Scholar 

  130. Lamb J, Melbourne I (2007) Normal form theory for relative equilibria andrelative periodic solutions. Trans AMS 359:4537–4556

    MathSciNet  MATH  Google Scholar 

  131. Lamb J, Roberts J (1998) Time reversal symmetry in dynamical systems:a survey. Physica D 112:1–39

    MathSciNet  ADS  MATH  Google Scholar 

  132. Levi D, Winternitz P (1989) Non-classical symmetry reduction: example of theBoussinesq equation. J Phys A 22:2915–2924

    MathSciNet  ADS  MATH  Google Scholar 

  133. Lin CM, Vittal V, Kliemann W, Fouad AA (1996) Investigation of modalinteraction and its effect on control performance in stressed power systems using normal forms of vector fields. IEEE Trans Power Syst11:781–787

    Google Scholar 

  134. Marsden JE (1992) Lectures on Mechanics. Cambridge University Press,Cambridge

    MATH  Google Scholar 

  135. Marsden JE, Ratiu T (1994) Introduction to mechanics and symmetry. Springer,Berlin

    MATH  Google Scholar 

  136. Michel L (1971) Points critiques de fonctions invariantes sur uneG-variété. Comptes Rendus Acad Sci Paris 272-A:433–436

    Google Scholar 

  137. Michel L (1971) Nonlinear group action Smooth action of compact Lie groupson manifolds. In: Sen RN, Weil C (eds) Statistical Mechanics and Field Theory. Israel University Press, Jerusalem

    Google Scholar 

  138. Michel L (1975) Les brisure spontanées de symétrie en physique. J PhysParis 36-C7:41–51

    Google Scholar 

  139. Michel L (1980) Symmetry defects and broken symmetry Configurations Hiddensymmetry. Rev Mod Phys 52:617–651

    ADS  Google Scholar 

  140. Michel L, Radicati L (1971) Properties of the breaking of hadronic internalsymmetry. Ann Phys NY 66:758–783

    MathSciNet  ADS  Google Scholar 

  141. Michel L, Radicati L (1973) The geometry of the octet. Ann IHP18:185–214

    MathSciNet  MATH  Google Scholar 

  142. Michel L, Zhilinskii BI (2001) Symmetry, invariants, topology Basictools. Phys Rep 341:11–84

    MathSciNet  ADS  MATH  Google Scholar 

  143. Mikhailov AV, Shabat AB, Yamilov RI (1987) The symmetry approach to theclassification of non-linear equations Complete list of integrable systems. Russ Math Surv 42(4):1–63

    MathSciNet  Google Scholar 

  144. Meyer KR, Hall GR (1992) Introduction to Hamiltonian dynamical systems andthe N-body problem. Springer, New York

    MATH  Google Scholar 

  145. Mitropolsky YA, Lopatin AK (1995) Nonlinear mechanics, groups andsymmetry. Kluwer, Dordrecht

    MATH  Google Scholar 

  146. Nakahara M (1990) Geometry, Topology and Physics. IOP,Bristol

    MATH  Google Scholar 

  147. Nash C, Sen S (1983) Topology and geometry for physicists. Academic Press,London

    MATH  Google Scholar 

  148. Nekhoroshev NN (1994) The Poincaré–Lyapunov–Liouville-Arnol'dtheorem. Funct Anal Appl 28:128–129

    MathSciNet  Google Scholar 

  149. Nekhoroshev NN (2002) Generalizations of Gordon theorem. Regul Chaotic Dyn7:239–247

    MathSciNet  ADS  MATH  Google Scholar 

  150. Nekhoroshev NN (2005) Types of integrability on a submanifold andgeneralizations of Gordons theorem. Trans Moscow Math Soc 66:169–241

    MathSciNet  Google Scholar 

  151. Olver PJ (1986) Applications of Lie groups to differentialequations. Springer, Berlin

    MATH  Google Scholar 

  152. Olver PJ (1995) Equivalence, Invariants, and Symmetry. Cambridge UniversityPress, Cambridge

    MATH  Google Scholar 

  153. Ovsjiannikov LV (1982) Group analysis of differential equations. AcademicPress, London

    Google Scholar 

  154. Palacián J, Yanguas P (2000) Reduction of polynomial Hamiltonians by theconstruction of formal integrals. Nonlinearity 13:1021–1054

    Google Scholar 

  155. Palacián J, Yanguas P (2001) Generalized normal forms for polynomial vectorfields. J Math Pures Appl 80:445–469

    Google Scholar 

  156. Palacián J, Yanguas P (2003) Equivariant N-DOF Hamiltonians via generalizednormal forms. Comm Cont Math 5:449–480

    Google Scholar 

  157. Palacián J, Yanguas P (2005) A universal procedure fornormalizing n-degree-of-freedom polynomial Hamiltonian systems. SIAM J Appl Math65:1130–1152

    Google Scholar 

  158. Pucci E, Saccomandi G (1992) On the weak symmetry group of partialdifferential equations. J Math Anal Appl 163:588–598

    Google Scholar 

  159. Ruelle D (1973) Bifurcation in the presence of a symmetry group. ArchRat Mech Anal 51:136–152

    MathSciNet  MATH  Google Scholar 

  160. Ruelle D (1989) Elements of Differentiable Dynamics and BifurcationTheory. Academic Press, London

    MATH  Google Scholar 

  161. Sadovskii DA, Delos JB (1996) Bifurcation of the periodic orbits ofHamiltonian systems – an analysis using normal form theory. Phys Rev A 54:2033–2070

    ADS  Google Scholar 

  162. Sanders JA (2003) Normal form theory and spectral sequences. J Diff Eqs192:536–552

    MATH  Google Scholar 

  163. Sanders JA (2005) Normal forms in filtered Lie algebra representations. ActaAppl Math 87:165–189

    MathSciNet  MATH  Google Scholar 

  164. Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamicalsystems. Springer, Berlin

    MATH  Google Scholar 

  165. Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlineardynamical systems. Springer, Berlin

    MATH  Google Scholar 

  166. Sartori G (1991) Geometric invariant theory A model-independentapproach to spontaneous symmetry and/or supersymmetry breaking. Riv N Cim 14–11:1–120

    Google Scholar 

  167. Sartori G (2002) Geometric invariant theory ina model-independent analysis of spontaneous symmetry and supersymmetry breaking. Acta Appl Math 70:183–207

    MathSciNet  MATH  Google Scholar 

  168. Sartori G, Valente G (2005) Constructive axiomatic approach to thedetermination of the orbit spaces of coregular compact linear groups. Acta Appl Math 87:191–228

    MathSciNet  MATH  Google Scholar 

  169. Sattinger DH (1979) Group theoretic methods in bifurcation theory. LectureNotes in Mathematics 762. Springer, Berlin

    Google Scholar 

  170. Sattinger DH (1983) Branching in the presence of symmetry. SIAM,Philadelphia

    Google Scholar 

  171. Sattinger DH, Weaver O (1986) Lie groups and algebras. Springer,Berlin

    MATH  Google Scholar 

  172. Siegel K, Moser JK (1971) Lectures on Celestial Mechanics. Springer, Berlin;reprinted in Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  173. Sokolov VV (1988) On the symmetries of evolutions equations. Russ Mah Surv43(5):165–204

    MATH  Google Scholar 

  174. Stephani H (1989) Differential equations Their solution usingsymmetries. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  175. Stewart I (1988) Bifurcation with symmetry. In: Bedford T, Swift J (eds) Newdirections in dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  176. Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric resonancein mechanical systems. Cambridge University Press, Cambridge,

    MATH  Google Scholar 

  177. Ushiki S (1984) Normal forms for singulatrities of vector fields. Jpn J ApplMath 1:1–34

    MathSciNet  MATH  Google Scholar 

  178. Vanderbauwhede A (1982) Local bifurcation and symmetry. Pitman,Boston

    MATH  Google Scholar 

  179. Verhulst F (1989) Nonlinear differential equations and dynamicalsystems. Springer, Berlin; (1996)

    Google Scholar 

  180. Verhulst F (1998) Symmetry and integrability in Hamiltonian normal form. In:Bambusi D, Gaeta G (eds) Symmetry and perturbation theory. CNR, Roma

    Google Scholar 

  181. Verhulst F (1999) On averaging methods for partial differentialequations. In: Degasperis A, Gaeta G (eds) Symmetry and perturbation theory II. World Scientific, Singapore

    Google Scholar 

  182. Vinogradov AM (1984) Local symmetries and conservation laws. Acta Appl Math2:21–78

    MathSciNet  MATH  Google Scholar 

  183. Vittal V, Kliemann W, Ni YX, Chapman DG, Silk AD, Sobajic DJ (1998)Determination of generator groupings for an islanding scheme in the Manitoba hydro system using the method of normal forms. IEEE Trans Power Syst13:1346–1351

    Google Scholar 

  184. Vorob'ev EM (1986) Partial symmetries of systems of differentialequations. Soviet Math Dokl 33:408–411

    MathSciNet  MATH  Google Scholar 

  185. Vorob'ev EM (1991) Reduction and quotient equations for differentialequations with symmetries. Acta Appl Math 23:1–24

    MathSciNet  MATH  Google Scholar 

  186. Walcher S (1991) On differential equations in normal form. Math Ann291:293–314

    MathSciNet  MATH  Google Scholar 

  187. Walcher S (1993) On transformation into normal form. J Math Anal Appl180:617–632

    MathSciNet  MATH  Google Scholar 

  188. Walcher S (1999) Orbital symmetries of first order ODEs. In: Degasperis A,Gaeta G (eds) Symmetry and perturbation theory II. World Scientific, Singapore

    Google Scholar 

  189. Walcher S (2000) On convergent normal form transformations in the presenceof symmetry. J Math Anal Appl 244:17–26

    Google Scholar 

  190. Wei J, Norman E (1963) Lie algebraic solution of linear differentialequations. J Math Phys 4:575–581

    MathSciNet  ADS  MATH  Google Scholar 

  191. Winternitz P (1987) What is new in the study of differential equations bygroup theoretical methods? In: Gilmore R (ed) Group Theoretical Methods in Physics proceedings of the XV ICGTMP. World Scientific,Singapore

    Google Scholar 

  192. Winternitz P (1993) Lie groups and solutions of nonlinear PDEs. In: IbortLA, Rodriguez MA (eds) Integrable systems, quantum groups, and quantum field theory NATO ASI 9009. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Gaeta, G. (2009). Non-linear Dynamics, Symmetry and Perturbation Theory in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_361

Download citation

Publish with us

Policies and ethics