Skip to main content

Biological Models of Molecular Network Dynamics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 400 Accesses

Definition of the Subject

Understanding the operation cellular networks is probably one of the most challenging and intellectually exciting scientific fields today. With theavailability of new experimental and theoretical techniques our understanding of the operation of cellular networks has made great strides in the last fewdecades. An important outcome of this work is the development of predictive quantitative models. Such models of cellular function will havea profound impact on our ability of manipulate living systems which will lead to new opportunities for generating energy, mitigating our impact onthe biosphere and last but not least, opening up new approaches and understanding of important disease states such as cancer and aging.

Introduction

Cellular networks are some of the most complex natural systems we know. Even in a “simple” organism such as E. coli, there are at least four thousand genes with many thousands of interactions between molecules of many differentsizes [11]....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Deterministic continuous model:

A mathematical model where the variables of the model can take any real value and where the time evolution of the model is set by the initial conditions.

Stochastic discrete model:

A mathematical model where the variables of the model take on discrete values and where the time evolution of the model is described by a set of probability distributions.

Bibliography

  1. Alon U (2006) An Introduction to Systems Biology: Design Principles ofBiological Circuits. Chapman & Hall/Crc Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  2. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet8(6):450–461

    Google Scholar 

  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: newengineering rules for an emerging discipline. Mol Syst Biol 2:2006–2006

    Google Scholar 

  4. Ariew R (1976) Ockham's Razor: A Historical and Philosophical Analysis ofOckham's Principle of Parsimony. Champaign-Urbana, University of Illinois

    Google Scholar 

  5. Aris R (1965) Prolegomena to the Rational Analysis of Systems of ChemicalReactions. Arch Rational Mech Anal 19:81–99

    MathSciNet  ADS  Google Scholar 

  6. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmentalpathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:1633–48

    Google Scholar 

  7. Atkins P (2001) Physical Chemistry, 7thedn. W. H. Freeman

    Google Scholar 

  8. Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators ofeukaryotic gene expression. Nat Biotechnol 23(3):337–343

    Google Scholar 

  9. Becskei A, Serrano L (2000) Engineering stability in gene networks byautoregulation. Nature 405:590–593

    ADS  Google Scholar 

  10. Bergmann FT, Vallabhajosyula RR, Sauro HM (2006) Computational Tools forModeling Protein Networks. Current Proteomics 3(3):181–197

    Google Scholar 

  11. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-VidesJ, et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1474

    Google Scholar 

  12. Bliss RD, Painter PR, Marr AG (1982) Role of feedback inhibition instabilizing the classical operon. J Theor Biol 97(2):177–193

    Google Scholar 

  13. Burns JA (1971) Studies on Complex Enzyme Systems. Dissertation, University ofEdinburgh. http://www.sys-bio.org/BurnsThesis

  14. Cannon RH (1967) Dynamics of Physical Systems. McGraw-Hill College, NewYork

    Google Scholar 

  15. Chen YD, Westerhoff HV (1986) How do Inhibitors and Modifiers of IndividualEnzymes Affect Steady-state Fluxes and Concentrations in Metabolic Systems? Math Model 7:1173–1180

    MATH  Google Scholar 

  16. Chickarmane V, Kholodenko BN, Sauro HM (2007) Oscillatory dynamics arisingfrom competitive inhibition and multisite phosphorylation. J Theor Biol 244(1):68–76

    MathSciNet  Google Scholar 

  17. Chickarmane V, Ray A, Sauro HM, Nadim A (2007) A Model for p53Dynamics Triggered by DNA Damage. SIAM J Appl Dynamical Syst 6(1):61–78

    MathSciNet  ADS  MATH  Google Scholar 

  18. Cinquin O, Demongeot J (2002) Roles of positive and negative feedback inbiological systems. C R Biol. 325:1085–1095

    Google Scholar 

  19. Clarke BL (1980) Stability of complex reaction networks. Adv. Chem. Phys,vol. 42. Wiley, New York

    Google Scholar 

  20. Cornish-Bowden A (1995) Fundamentals of Enzyme Kinetics. Portland Press, London

    Google Scholar 

  21. Cornish-Bowden A, Cárdenas ML (2002) Metabolic balance sheets. Nature420(6912):129–130

    Google Scholar 

  22. Dibrov BF, Zhabotinsky AM, Kholodenko BN (1982) Dynamic stability of steadystates and static stabilization in unbranched metabolic pathways. J Math Biol 15:51–63

    MathSciNet  MATH  Google Scholar 

  23. Elowitz MB, Leibler S (2000) A synthetic oscillatory network oftranscriptional regulators. Nature 403:335–338

    ADS  Google Scholar 

  24. Entus R, Aufderheide B, Sauro HM (2007) Design and implementation of threeincoherent feed-forward motif based biological concentration sensors. Systems and SyntheticBiology. doi:10.1007/s11693-007-9008-6

  25. Erdi P, Toth J (1989) Mathematical Models of Chemical Reactions. Theory andApplications of Deterministic and Stochastic Models. Manchester University Press, Manchester, Princeton University Press,Princeton

    Google Scholar 

  26. Fell D (1997) Understanding the Control of Metabolism. Portland Press,London

    Google Scholar 

  27. Fell DA, Sauro HM (1985) Metabolic Control Analysis: Additional relationshipsbetween elasticities and control coefficients. Eur J Biochem 148:555–561

    Google Scholar 

  28. Fell DA, Small JR (1986) Fat synthesis in adipose tissue: an examination ofstoichiometric constraints. Biochem J 238:781–786

    Google Scholar 

  29. Ferrell JE (1996) Tripping the switch fantastic: how a protein kinasecascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences 21:460–466

    Google Scholar 

  30. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggleswitch in Escherichia coli. Nature 403:339–342

    ADS  Google Scholar 

  31. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev PhysChem 58:35–55

    ADS  Google Scholar 

  32. Goldbeter A (1997) Biochemical Oscillations and Cellular Rhythms: TheMolecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  33. Goldbeter A, Koshland DE (1984) Ultrasensitivity in biochemical systemscontrolled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 259:14441–7

    Google Scholar 

  34. Heinrich R, Rapoport TA (1974) A Linear Steady-state Treatment ofEnzymatic Chains; General Properties, Control and Effector Strength. Eur J Biochem 42:89–95

    Google Scholar 

  35. Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Chapman andHall, New York

    MATH  Google Scholar 

  36. Heinrich R, Rapoport SM, Rapoport TA (1977) Metabolic regulation andmathematical models. Prog Biophys Molec Biol 32:1–82

    MathSciNet  Google Scholar 

  37. Hofmeyr JHS (1986) Steady state modelling of metabolic pathways: a guidefor the prespective simulator. Comp Appl Biosci 2:5–11

    Google Scholar 

  38. Hofmeyr JHS (1986) Studies in steady state modelling and control analysis ofmetabolic systems. Dissertation, University of Stellenbosch

    Google Scholar 

  39. Hofmeyr JHS (2001) Metabolic Control Analysis in a Nutshell. In:Proceedings of the Second International Conference on Systems Biology, Caltech

    Google Scholar 

  40. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologiesenable predictive and preventative medicine. Science 306(5696):640–643

    ADS  Google Scholar 

  41. Horn F, Jackson R (1972) General Mass Action Kinetics. Arch Rational Mech Anal47:81–116

    MathSciNet  ADS  Google Scholar 

  42. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life:systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Google Scholar 

  43. Jones MH (1977) A practical introduction to electroniccircuits. Cambridge University Press, Cambridge

    Google Scholar 

  44. Kacser H, Burns JA (1973) The Control of Flux. In D. D. Davies (eds) RateControl of Biological Processes, Symp Soc Exp Biol, vol 27, Cambridge University Press, Cambridge, pp 65–104

    Google Scholar 

  45. Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring aboutoscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583–1588

    Google Scholar 

  46. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev MolCell Biol 7(3):165–176

    Google Scholar 

  47. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems Biology inPractice. Wiley-VCH, Weinheim

    Google Scholar 

  48. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) TheGlycolytic Flux in Escherichia coli Is Controlled by the Demand for ATP. J Bacteriol 184(14):3909–3916

    Google Scholar 

  49. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U(2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature, Genetics 36(2):147–150

    Google Scholar 

  50. Lauffenburger DA (2000) Cell signaling pathways as control modules: complexityfor simplicity? Proc Natl Acad Sci U S A 97:5031–3

    ADS  Google Scholar 

  51. Lev Bar-Or R, Maya R, Segel LA, Alon U, Levine AJ, Oren M (2000) Generation ofoscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci USA97(21):11250–11255

    ADS  Google Scholar 

  52. Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feed-forwardloop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356(5):1073–1081

    Google Scholar 

  53. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistabilityarising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–9

    Google Scholar 

  54. Moniz-Barreto P, Fell DA (1993) Simulation of dioxygen free radicalreactions. Biochem Soc Trans 21(3):256–256

    Google Scholar 

  55. Moore WJ (1972) Physical Chemistry. 5th edn. Longman, London, Prentice Hall,NJ

    Google Scholar 

  56. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptorsignaling network. Mol Syst Biol 2:2006–2006

    Google Scholar 

  57. Othmer HH (1976) The quantitative dynamics of a class of biochemicalcontrol circuits. J Math Biol 37:53–78

    MathSciNet  Google Scholar 

  58. Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A (2004)Multistability in the lactose utilization network of Escherichia coli. Nature 427(6976):737–740

    ADS  Google Scholar 

  59. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004)Comparison of network-based pathway analysis methods. Trends Biotechnol 22(8):400–405

    Google Scholar 

  60. Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing:fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 97(13):7148–7153

    ADS  Google Scholar 

  61. Reder C (1988) Metabolic Control Theory: A StructuralApproach. J Theor Biol 135:175–201

    MathSciNet  ADS  Google Scholar 

  62. Reich JG, Selkov EE (1981) Energy metabolism of the cell. Academic Press,London

    Google Scholar 

  63. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA,et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature440(7086):940–943

    ADS  Google Scholar 

  64. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds theresponse times of transcription networks. J Mol Biol 323(5):785–793

    Google Scholar 

  65. Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification andsignaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA102(7):2310–2315

    ADS  Google Scholar 

  66. Sauro HM, Ingalls B (2004) Conservation analysis in biochemical networks:computational issues for software writers. Biophys Chem 109:1–15

    Google Scholar 

  67. Sauro HM, Kholodenko BN (2004) Quantitative analysis of signalingnetworks. Prog Biophys Mol Biol. 86:5–43

    Google Scholar 

  68. Sauro HM, Small JR, Fell DA (1987) Metabolic Control and its Analysis:Extensions to the theory and matrix method. Eur J Biochem 165:215–221

    Google Scholar 

  69. Savageau MA (1972) The behaviour of intact biochemical control systems. CurrTopics Cell Reg 6:63–130

    Google Scholar 

  70. Savageau MA (1974) Optimal design of feedback control by inhibition:Steady-state considerations. J Mol Evol 4:139–156

    Google Scholar 

  71. Savageau MA (1975) Optimal design of feedback control by inhibition: dynamicconsiderations. J Mol Evol 5(3):199–222

    Google Scholar 

  72. Savageau MA (1976) Biochemical systems analysis: a study of function anddesign in molecular biology. Addison-Wesley, Reading

    MATH  Google Scholar 

  73. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes inbiochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol17(2):53–60

    Google Scholar 

  74. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolicpathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology 18:326–332

    Google Scholar 

  75. Segel IH (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibriumand Steady-State Enzyme Systems. Wiley-Interscience, New York

    Google Scholar 

  76. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering: Principlesand Methodologies. Academic Press, San Diego

    Google Scholar 

  77. Strogatz S (2001) Nonlinear Dynamics and Chaos: With Applications to Physics,Biology, Chemistry, and Engineering. Perseus Books Group, Reading

    Google Scholar 

  78. Tyson J, Othmer HG (1978) The dynamics of feedback control circuits inbiochemical pathways. In: Rosen R, Snell FM (eds) Progress in Theoretical Biology, vol 5. Academic press, New York,pp 1–62

    Google Scholar 

  79. Tyson JJ, Chen K, Novak B (2001) Network Dynamics And Cell Physiology. Nat RevMol Cell Biol 2:908–916

    Google Scholar 

  80. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers:dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Google Scholar 

  81. Umbarger HE (1956) Evidence for a Negative-Feedback Mechanism in theBiosynthesis of Leucine. Science 123:848

    ADS  Google Scholar 

  82. Vallabhajosyula RR, Chickarmane V, Sauro HM (2006) Conservation analysis oflarge biochemical networks. Bioinformatics 22(3):346–353

    Google Scholar 

  83. Vass M, Allen N, Shaffer CA, Ramakrishnan N, Watson LT, Tyson JJ (2004) theJigCell model builder and run manager. Bioinformatics 20(18):3680–3681

    Google Scholar 

  84. Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol17(5):548–557

    Google Scholar 

  85. Wilkinson DJ (2006) Stochastic Modelling for Systems Biology. Chapman and Hall, New York

    MATH  Google Scholar 

  86. Win MN, Smolke CD (2007) A modular and extensible RNA-basedgene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104(36):14283–14288

    ADS  Google Scholar 

  87. Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. CurrentOpinion in Microbiology 6:125–34

    Google Scholar 

  88. Wolkenhauer O, Ullah M, Wellstead P, Cho KH (2005) The dynamic systemsapproach to control and regulation of intracellular networks. FEBS Lett 579(8):1846–1853

    Google Scholar 

  89. Yates RA, Pardee AB (1956) Control of Pyrimidine Biosynthesis in Escherichiacoli by a Feed-Back Mechanism. J Biol Chem 221:757–770

    Google Scholar 

  90. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG,et al (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36(5):486–491

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Sauro, H.M. (2009). Biological Models of Molecular Network Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_37

Download citation

Publish with us

Policies and ethics