Definition of the Subject
An optical computer is a physical information processing device that uses photons to transport data from one memory location to another, and processes the data while it is in this form. In contrast, a conventional digital electronic computer uses electric fields (traveling along conductive paths) for this task. The optical data paths in an optical computer are effected by refraction (such as the action of a lens) or reflection (such as the action of a mirror). A principal advantage of an optical data path over an electrical data path is that optical data paths can intersect and even completely overlap without corrupting the data in either path. Optical computers make use of this property to efficiently transform the optically-encoded data from one representation to another, for example, to shuffle or reverse the order of an array of parallel paths, or to convolve the data in several arrays of parallel paths. Other advantages of optical computers include...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Abbreviations
- Coherent light:
-
Light of a narrow band of wavelengths (temporally coherent), and a light beam whose phase is approximately constant over its cross sectional area (spatial coherence). For example, coherent light can be produced by a laser.
- Incoherent light:
-
Light which is not spatially coherent and not temporally coherent. For example, incoherent light is produced by a conventional light bulb.
- Source:
-
A device for generating light.
- Spatial light modulator (SLM):
-
A device that imposes some form of spatially-varying modulation on a beam of light. An SLM may modulate the intensity, phase, or both, of the light.
- Detector:
-
A device for sensing light.
- Continuous space machine (CSM):
-
A general optical model of computation that is defined in Sect. “Continuous Space Machine (CSM)”.
- Parallel computation thesis:
-
This thesis states that parallel time corresponds, within a polynomial, to sequential space, for reasonable parallel and sequential machines [29,52,74,98,126].
- P, NP, PSPACE, NC:
-
Complexity classes , these classes are respectively defined as the set of problems solvable on polynomial time deterministic Turing machines ; polynomial time nondeterministic Turing machines; polynomial space Turing machines; and parallel computers that use polylogarithmic time and polynomial hardware [97].
Bibliography
Abushagur MAG, Caulfield HJ (1987) Speed and convergence of bimodal optical computers. Opt Eng 26(1):22–27
Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024
Alhazov A, de Jesús Pérez–Jiménez M (2007) Uniform solution to QSAT using polarizationless active membranes. In: Durand–Lose J, Margenstern M (eds) Machines, Computations and Universality (MCU). LNCS, vol 4664. Springer, Orléans, pp 122–133
Armitage JD, Lohmann AW (1965) Character recognition by incoherent spatial filtering. Appl Opt 4(4):461–467
Arsenault HH, Sheng Y (1992) An Introduction to Optics in Computers. Tutorial Texts in Optical Engineering, vol TT8. SPIE Press, Bellingham, Washington
Arsenault HH, Hsu YN, Chalasinska–Macukow K (1984) Rotation-invariant pattern recognition. Opt Eng 23(6):705–709
Balcázar JL, Díaz J, Gabarró J (1988) Structural complexity, vols I and II. EATCS Monographs on Theoretical Computer Science. Springer, Berlin
Beyette Jr FR, Mitkas PA, Feld SA, Wilmsen CW (1994) Bitonic sorting using an optoelectronic recirculating architecture. Appl Opt 33(35):8164–8172
Borodin A (1977) On relating time and space to size and depth. SIAM J Comput 6(4):733–744
Bracewell RN (1978) The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series, McGraw–Hill, New York
Brenner KH, Huang A, Streibl N (1986) Digital optical computing with symbolic substitution. Appl Opt 25(18):3054–3060
Brenner KH, Kufner M, Kufner S (1990) Highly parallel arithmetic algorithms for a digital optical processor using symbolic substitution logic. Appl Opt 29(11):1610–1618
Casasent DP (1984) Unified synthetic discriminant function computational formulation. Appl Opt 23:1620–1627
Casasent DP, House GP (1994) Comparison of coherent and noncoherent optical correlators. In: Optical Pattern Recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 170–178
Casasent DP, House GP (1994) Implementation issues for a noncoherent optical correlator. In: Optical Pattern Recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 179–188
Casasent DP, Psaltis D (1976) Position, rotation, and scale invariant optical correlation. Appl Opt 15(7):1795–1799
Casasent DP, Psaltis D (1976) Scale invariant optical transforms. Opt Eng 15(3):258–261
Casasent DP, Jackson J, Neuman CP (1983) Frequency-multiplexed and pipelined iterative optical systolic array processors. Appl Opt 22:115–124
Caulfield HJ (ed) (1979) Handbook of Optical Holography. Academic Press, New York
Caulfield HJ (1989) Computing with light. Byte 14:231–237
Caulfield HJ (1989) The energetic advantage of analog over digital computing. In: OSA Optical Computing Technical Digest Series, vol 9. Optical Society of America, Washington, pp 180–183
Caulfield HJ (1990) Space-time complexity in optical computing. In: Javidi B (ed) Optical information-processing systems and architectures II. SPIE, vol 1347. SPIE Press, Bellingham, pp 566–572
Caulfield HJ, Abushagur MAG (1986) Hybrid analog-digital algebra processors. In: Optical and Hybrid Computing II. Proceedings of SPIE, vol 634. SPIE Press, Bellingham, pp 86–95
Caulfield HJ, Haimes R (1980) Generalized matched filtering. Appl Opt 19(2):181–183
Caulfield HJ, Horvitz S, Winkle WAV (1977) Introduction to the special issue on optical computing. Proceedings of the IEEE 65(1):4–5
Caulfield HJ, Rhodes WT, Foster MJ, Horvitz S (1981) Optical implementation of systolic array processing. Opt Commun 40:86–90
Caulfield HJ, Kinser JM, Rogers SK (1989) Optical neural networks. Proc IEEE 77:1573–1582
Cerf NJ, Adami C, Kwiat PG (1998) Optical simulation of quantum logic. Phys Rev A 57(3):R1477–R1480
Chandra AK, Stockmeyer LJ (1976) Alternation. In: 17th annual symposium on Foundations of Computer Science, IEEE, Houston, Texas, pp 98–108
Chandra AK, Kozen DC, Stockmeyer LJ (1981) Alternation. J ACM 28(1):114–133
Chang S, Arsenault HH, Garcia–Martinez P, Grover CP (2000) Invariant pattern recognition based on centroids. Appl Opt 39(35):6641–6648
Chen FS, LaMacchia JT, Fraser DB (1968) Holographic storage in lithium niobate. Appl Phys Lett 13(7):223–225
Chiou AE (1999) Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects. Proc IEEE 87(12):2074–2085
Clavero R, Ramos F, Martí J (2005) All-optical flip-flop based on an active Mach–Zehnder interferometer with a feedback loop. Opt Lett 30(21):2861–2863
Cutrona LJ, Leith EN, Palermo CJ, Porcello LJ (1960) Optical data processing and filtering systems. IRE Trans Inf Theory 6(3):386–400
Cutrona LJ, Leith EN, Porcello LJ, Vivian WE (1966) On the application of coherent optical processing techniques to synthetic-aperture radar. Proc IEEE 54(8):1026–1032
Desmulliez MPY, Wherrett BS, Waddie AJ, Snowdon JF, Dines JAB (1996) Performance analysis of self-electro-optic-effect-device-based (seed-based) smart-pixel arrays used in data sorting. Appl Opt 35(32):6397–6416
Dolev S, Fitoussi H (2007) The traveling beam: optical solution for bounded NP-complete problems. In: Crescenzi P, Prencipe G, Pucci G (eds) The fourth international conference on fun with algorithms (FUN). Springer, Heidelberg, pp 120–134
Dorren HJS, Hill MT, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe GD (2003) Optical packet switching and buffering by using all-optical signal processing methods. J Lightwave Technol 21(1):2–12
Durand–Lose J (2006) Reversible conservative rational abstract geometrical computation is Turing-universal. In: Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, (CiE). Lecture Notes in Computer Science. Springer, Swansea, vol 3988. pp 163–172
Efron U, Grinberg J, Braatz PO, Little MJ, Reif PG, Schwartz RN (1985) The silicon liquid crystal light valve. J Appl Phys 57(4):1356+
Esteve–Taboada JJ, García J, Ferreira C (2000) Extended scale-invariant pattern recognition with white-light illumination. Appl Opt 39(8):1268–1271
Farhat NH, Psaltis D (1984) New approach to optical information processing based on the Hopfield model. J Opt Soc Am A 1:1296
Feitelson DG (1988) Optical Computing: A survey for computer scientists. MIT Press, Cambridge, Massachusetts
Feng JH, Chin GF, Wu MX, Yan SH, Yan YB (1995) Multiobject recognition in a multichannel joint-transform correlator. Opt Lett 20(1):82–84
Fortune S, Wyllie J (1978) Parallelism in random access machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing, ACM, New York, pp 114–118
Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778
Gara AD (1979) Real time tracking of moving objects by optical correlation. Appl Opt 18(2):172–174
Geldenhuys R, Liu Y, Calabretta N, Hill MT, Huijskens FM, Khoe GD, Dorren HJS (2004) All-optical signal processing for optical packet switching. J Opt Netw 3(12):854–865
Ghosh AK, Casasent DP, Neuman CP (1985) Performance of direct and iterative algorithms on an optical systolic processor. Appl Opt 24(22):3883–3892
Goldberg L, Lee SH (1979) Integrated optical half adder circuit. Appl Opt 18:2045–2051
Goldschlager LM (1977) Synchronous parallel computation. Ph?D thesis, University of Toronto, Computer Science Department
Goldschlager LM (1978) A unified approach to models of synchronous parallel machines. In: Proc. 10th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 89–94
Goldschlager LM (1982) A universal interconnection pattern for parallel computers. J ACM 29(4):1073–1086
Goodman JW (1977) Operations achievable with coherent optical information processing systems. Proc IEEE 65(1):29–38
Goodman JW (2005) Introduction to Fourier Optics, 3rd edn. Roberts & Company, Englewood
Grinberg J, Jacobson AD, Bleha WP, Miller L, Fraas L, Boswell D, Myer G (1975) A new real-time noncoherent to coherent light image converter: The hybrid field effect liquid crystal light valve. Opt Eng 14(3):217–225
Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on Theory of Computing. ACM, New York, pp 212–219
Guilfoyle PS, Hessenbruch JM, Stone RV (1998) Free-space interconnects for high-performance optoelectronic switching. IEEE Comp 31(2):69–75
Haist T, Osten W (2007) An optical solution for the travelling salesman problem. Opt Expr 15(16):10473–10482
Hartmanis J, Simon J (1974) On the power of multiplication in random access machines. In: Proceedings of the 15th annual symposium on switching and automata theory. IEEE, The University of New Orleans, pp 13–23
Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull Math Biol 49(6):737–759
Horner JL (ed) (1987) Optical Signal Processing. Academic Press, San Diego
Hough PVC (1962) Methods and measures for recognising complex patterns. U.S. Patent No. 3069654
Hsu KY, Li HY, Psaltis D (1990) Holographic implementation of a fully connected neural network. Proc IEEE 78(10):1637–1645
Hsu YN, Arsenault HH (1982) Optical pattern recognition using circular harmonic expansion. Appl Opt 21(22):4016–4019
Huang A (1984) Architectural considerations involved in the design of an optical digital computer. Proc IEEE 72(7):780–786
Huang A, Tsunoda Y, Goodman JW, Ishihara S (1979) Optical computation using residue arithmetic. Appl Opt 18(2):149–162
Jacobson AD, Beard TD, Bleha WP, Morgerum JD, Wong SY (1972) The liquid crystal light value, an optical-to-optical interface device. In: Proceedings of the Conference on Parallel Image Processing, document X-711-72-308, Goddard Space Flight Center. NASA, Washington, pp 288–299
Javidi B (1989) Nonlinear joint power spectrum based optical correlation. Appl Opt 28(12):2358–2367
Javidi B (1990) Generalization of the linear matched filter concept to nonlinear matched filters. Appl Opt 29(8):1215–1217
Javidi B, Wang J (1995) Optimum distortion-invariant filter for detecting a noisy distorted target in nonoverlapping background noise. J Opt Soc Am A 12(12):2604–2614
Karim MA, Awwal AAS (1992) Optical Computing: An Introduction. Wiley, New York
Karp RM, Ramachandran V (1990) Parallel algorithms for shared memory machines. In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A. Elsevier, Amsterdam, pp 869–941
Knill E, LaFlamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52
Lee JN (ed) (1995) Design Issues in Optical Processing. Cambridge Studies in Modern Optics. Cambridge University Press, Cambridge
Lee JN (ed) (1995) Design issues in optical processing. Cambridge studies in modern optics. Cambridge University Press, Cambridge
Leith EN (1977) Complex spatial filters for image deconvolution. Proc IEEE 65(1):18–28
Lenslet Labs (2001) Optical digital signal processing engine. white paper report, Lenslet Ltd., 12 Hachilazon St., Ramat–Gan, Israel 52522
Lipton RJ (1995) Using DNA to solve NP-complete problems. Science 268:542–545
Lohmann AW (1993) Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Am A 10(10):2181–2186
Louri A, Post A (1992) Complexity analysis of optical-computing paradigms. Appl Opt 31(26):5568–5583
Louri A, Hatch Jr JA, Na J (1995) Constant-time parallel sorting algorithm and its optical implementation using smart pixels. Appl Opt 34(17):3087–3097
Lu XJ, Yu FTS, Gregory DA (1990) Comparison of Vander lugt and joint transform correlators. Appl Phys B 51:153–164
McAulay AD (1991) Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers. Wiley, New York
Mead C (1989) Analog VLSI and Neural Systems. Addison–Wesley, Reading
Miller DA (2000) Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 88(6):728–749
Moore C (1991) Generalized shifts: undecidability and unpredictability in dynamical systems. Nonlinearity 4:199–230
Moore C (1997) Majority-vote cellular automata, Ising dynamics and P-completeness. J Stat Phys 88(3/4):795–805
Naughton T, Javadpour Z, Keating J, Klíma M, Rott J (1999) General-purpose acousto-optic connectionist processor. Opt Eng 38(7):1170–1177
Naughton TJ (2000) Continuous-space model of computation is Turing universal. In: Bains S, Irakliotis LJ (eds) Critical Technologies for the Future of Computing. Proc SPIE, vol 4109. San Diego, pp 121–128
Naughton TJ (2000) A model of computation for Fourier optical processors. In: Lessard RA, Galstian T (eds) Optics in Computing 2000. Proc SPIE, vol 4089. Quebec, pp 24–34
Naughton TJ, Woods D (2001) On the computational power of a continuous-space optical model of computation. In: Margenstern M, Rogozhin Y (eds) Machines, Computations and Universality: Third International Conference (MCU'01). LNCS, vol 2055. Springer, Heidelberg, pp 288–299
Oltean M (2006) A light-based device for solving the Hamiltonian path problem. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, York, pp 217–227
O'Neill EL (1956) Spatial filtering in optics. IRE Trans Inf Theory 2:56–65
Paek EG, Choe JY, Oh TK, Hong JH, Chang TY (1997) Nonmechanical image rotation with an acousto-optic dove prism. Opt Lett 22(15):1195–1197
Papadimitriou CH (1995) Computational complexity. Addison–Wesley, Reading
Parberry I (1987) Parallel complexity theory. Wiley, New York
Paun G (2002) Membrane computing: an introduction. Springer, Heidelberg
Pe'er A, Wang D, Lohmann AW, Friesem AA (1999) Optical correlation with totally incoherent light. Opt Lett 24(21):1469–1471
Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys Rev A 68:032316–3
Pratt VR, Stockmeyer LJ (1976) A characterisation of the power of vector machines. J Comput Syst Sci 12:198–221
Pratt VR, Rabin MO, Stockmeyer LJ (1974) A characterisation of the power of vector machines. In: Proc 6th annual ACM symposium on theory of computing. ACM, New York, pp 122–134
Psaltis D, Farhat NH (1985) Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. Opt Lett 10(2):98–100
Pu A, Denkewalter RF, Psaltis D (1997) Real-time vehicle navigation using a holographic memory. Opt Eng 36(10):2737–2746
Reif J, Tygar D, Yoshida A (1990) The computability and complexity of optical beam tracing. In: 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, St. Louis, pp 106–114
Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive. Appl Opt 36(29):7327–7340
Rhodes WT (1981) Acousto-optic signal processing: convolution and correlation. Proc IEEE 69(1):65–79
Sawchuk AA, Strand TC (1984) Digital optical computing. Proc IEEE 72(7):758–779
Shaked NT, Simon G, Tabib T, Mesika S, Dolev S, Rosen J (2006) Optical processor for solving the traveling salesman problem (TSP). In: Javidi B, Psaltis D, Caulfield HJ (eds) Proc SPIE, Optical Information Systems IV, vol 63110G. SPIE, Bellingham
Shaked NT, Messika S, Dolev S, Rosen J (2007) Optical solution for bounded NP-complete problems. Appl Opt 46(5):711–724
Shor P (1994) Algorithms for quantum computation: Discrete logarithms ande factoring. In: Proceedings 35th Annual Symposium on Foundations Computer Science. ACM, New York, pp 124–134
Sosík P (2003) The computational power of cell division in P systems: Beating down parallel computers? Nat Comput 2(3):287–298
Sosík P, Rodríguez–Patón A (2007) Membrane computing and complexity theory: A characterization of PSPACE. J Comput Syst Sci 73(1):137–152
Stirk CW, Athale RA (1988) Sorting with optical compare-and-exchange modules. Appl Opt 27(9):1721–1726
Stone RV (1994) Optoelectronic processor is programmable and flexible. Laser Focus World 30(8):77–79
Stone RV, Zeise FF, Guilfoyle PS (1991) DOC II 32-bit digital optical computer: optoelectronic hardware and software. In: Optical Enhancements to Computing Technology, Proc SPIE, vol 1563. SPIE, Bellingham, pp 267–278
Stroke GW, Halioua M, Thon F, Willasch DH (1974) Image improvement in high-resolution electron microscopy using holographic image deconvolution. Optik 41(3):319–343
Sullivan DL (1972) Alignment of rotational prisms. Appl Opt 11(9):2028–2032
Tromp J, van Emde Boas P (1993) Associative storage modification machines. In: Ambos–Spies K, Homer S, Schöning U (eds) Complexity theory: current research. Cambridge University Press, pp 291–313
Turin GL (1960) An introduction to matched filters. IRE Trans Inf Theory 6(3):311–329
Upatnieks J (1983) Portable real-time coherent correlator. Appl Opt 22(18):2798–2803
VanderLugt A (1964) Signal detection by complex spatial filtering. IEEE Trans Inf Theory 10(2):139–145
VanderLugt A (1974) Coherent optical processing. Proc IEEE 62(10):1300–1319
VanderLugt A (1992) Optical Signal Processing. Wiley, New York
van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of Theoretical Computer Science, vol A. Elsevier, Amsterdam, chap 1
van Leeuwen J, Wiedermann J (1987) Array processing machines. BIT 27:25–43
Wang CH, Jenkins BK (1990) Subtracting incoherent optical neuron model – Analysis, experiment and applications. Appl Opt 29(14):2171–2186
Wang PY, Saffman M (1999) Selecting optical patterns with spatial phase modulation. Opt Lett 24(16):1118–1120
Weaver CS, Goodman JW (1966) A technique for optically convolving two functions. Appl Opt 5(7):1248–1249
Woods D (2005) Computational complexity of an optical model of computation. Ph?D thesis, National University of Ireland, Maynooth
Woods D (2005) Upper bounds on the computational power of an optical model of computation. In: Deng X, Du D (eds) 16th International Symposium on Algorithms and Computation (ISAAC 2005). LNCS, vol 3827. Springer, Heidelberg, pp 777–788
Woods D (2006) Optical computing and computational complexity. In: Fifth International Conference on Unconventional Computation (UC'06). LNCS, vol 4135. Springer, pp 27–40
Woods D, Gibson JP (2005) Complexity of continuous space machine operations. In: Cooper SB, Löewe B, Torenvliet L (eds) New Computational Paradigms, First Conference on Computability in Europe (CiE 2005). LNCS, vol 3526. Springer, Amsterdam, pp 540–551
Woods D, Gibson JP (2005) Lower bounds on the computational power of an optical model of computation. In: Calude CS, Dinneen MJ, Paun G, Pérez–Jiménez MJ, Rozenberg G (eds) Fourth International Conference on Unconventional Computation (UC'05). LNCS, vol 3699. Springer, Heidelberg, pp 237–250
Woods D, Naughton TJ (2005) An optical model of computation. Theor Comput Sci 334(1–3):227–258
Woods D, Naughton TJ (2008) Parallel and sequential optical computing. In: International Workshop on Optical SuperComputing. LNCS. Springer, Heidelberg
Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt Lett 22(16):1268–1270
Yokomori T (2002) Molecular computing paradigm – toward freedom from Turing's charm. Nat Comput 1(4):333–390
Yu FTS (1996) Garden of joint transform correlators: an account of recent advances. In: Second International Conference on Optical Information Processing. Proc SPIE, vol 2969. SPIE, Bellingham, pp 396–401
Yu FTS, Lu T, Yang X, Gregory DA (1990) Optical neural network with pocket-sized liquid-crystal televisions. Opt Lett 15(15):863–865
Yu FTS, Jutamulia S, Yin S (eds) (2001) Introduction to information optics. Academic Press, San Diego
Zhai H, Mu G, Sun J, Zhu X, Liu F, Kang H, Zhan Y (1999) Color pattern recognition in white-light joint transform correlation. Appl Opt 38(35):7238–7244
Acknowledgments
DW thanks J. Paul Gibson and Cris Moore for interesting discussions. DW acknowledges Junta de Andalucia grant TIC-581, Science Foundation Ireland grant number 04/IN3/1524, and Irish Research Council for Science Engineering and Technology grant number PD/2004/33. TN acknowledges support from the European Commission through a Marie Curie Intra-European Fellowship.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag
About this entry
Cite this entry
Naughton, T.J., Woods, D. (2009). Optical Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_377
Download citation
DOI: https://doi.org/10.1007/978-0-387-30440-3_377
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-75888-6
Online ISBN: 978-0-387-30440-3
eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics