Skip to main content

Partial Differential Equations that Lead to Solitons

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

In this part, we introduce the reader to a certain class of nonlinear partial differential equations which are characterized by solitarywave solutions of the classical nonlinear equations that lead tosolitons . The classical nonlinear equations of interest show the existence of special types of travelingwave solutions which are either solitary waves or solitons. In this study, we will review a few solutions arising from the analytic work of theKorteweg–de Vries (KdV) equations, the generalized regularized long-wave RLW equation, Kadomtsev–Petviashvili (KP) equation, theKlein–Gordon (KG) equation, the Sine-Gordon (SG) equation, the Boussinesq equation, Pochhammer–Chree (PC) equation and the nonlinearSchrödinger (NLS) equation, the Fisher equation, Burgers equation, the Korteweg–de Vries Burgers' equation (KdVB), the two‐dimensionalKorteweg-deVries Burgers' (tdKdVB), the potential Kadomtsev–Petviashvili equation, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Barrett JW, Blowey JF (1999) Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math Comput 68:487–517

    MathSciNet  ADS  MATH  Google Scholar 

  2. Benjamin TB, Bona JL, Mahony JJ (1972) Model Equations for Waves in Nonlinear Dispersive Systems. Phil Trans Royal Soc London 227:47–78

    MathSciNet  ADS  Google Scholar 

  3. Bespalov VI, Talanov VI (1966) Filamentary structure of light beams in nonlinear liquids. JETP Lett 3:307–310

    ADS  Google Scholar 

  4. Bona JL, Pritchard WG, Scott LR (1981) An Evaluation for Water Waves. Phil Trans Royal Soc London A 302:457–510

    MathSciNet  ADS  Google Scholar 

  5. Bona JL, Pritchard WG, Scott LR (1983) A Comparison of Solutions of two Model Equations for Long Waves. In: Lebovitz NR (ed), Fluid Dynamics in Astrophysics and Geophysics. Lectures in Applied Mathematics. Am Math Soc 20:235–267

    MathSciNet  Google Scholar 

  6. Bona JL, Sachs RL (1988) Global Existence of Smooth Solutions and Stability Theory of Solitary Waves for a Generalized Boussinesq Equation. Commun Math Phys 118:15–29

    MathSciNet  ADS  MATH  Google Scholar 

  7. Boussinesq J (1871) Thèorie de I'ntumescence Liquid Appelèe Onde Solitaire ou de Translation, se Propageant dans un Canal Rectangulaire. Comptes Rendus Acad Sci (Paris) 72:755–759

    MATH  Google Scholar 

  8. Bridges TJ, Reich S (2001) Multi‐symplectic spectral discretizations for the Zakharov-Kuznetsov and Shallow water equations. Physica D 152:491–504

    MathSciNet  ADS  Google Scholar 

  9. Burgers J (1948) A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics. Academic Press, New York, pp 171–199

    Google Scholar 

  10. Chan JW (1961) On spinodal decomposition. Acta Metall 9:795

    Google Scholar 

  11. Chan JW, Hilliard JE (1958) Free energy of a nonuniform system I. Interfacial free energy. J Chem Phys 28:258–267

    ADS  Google Scholar 

  12. Clarkson PA, LeVeque RJ, Saxton R (1986) Solitary Wave Interactions in Elastic Rods. Stud Appl Math 75:95–122

    MathSciNet  MATH  Google Scholar 

  13. Cole JD (1951) On a quasilinear parabolic equation occurring in aerodynamic. Quart Appl Math 9:225–236

    MathSciNet  MATH  Google Scholar 

  14. Debtnath L (1983) Nonlinear Waves. Cambrige University Press, Cambrige

    Google Scholar 

  15. Debtnath L (1997) Nonlinear Partial Differential Equations for Scientist and Engineers. Birkhauser, Boston

    Google Scholar 

  16. Drazin PG, Johnson RS (1989) Solutions: An Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  17. Edmundson DE, Enns RH (1992) Bistable light bullets. Opt Lett 17:586

    ADS  Google Scholar 

  18. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:353–369

    Google Scholar 

  19. Garcke H (2000) Habilitation Thesis, Bonn University, Bonn

    Google Scholar 

  20. Gardner CS, Greene JM, Kruskal MD, Miura RM (1967) Method for solving the Korteweg–de Vries equation. Phys Rev Lett 19:1095–1097

    ADS  MATH  Google Scholar 

  21. Gardner CS, Greene JM, Kruskal MD, Miura RM (1974) Korteweg–de Vries equation and generalizations. IV. Method for exact solution. Commun Pure Appl Math XXVII:97–133

    Google Scholar 

  22. Geyikli T, Kaya D (2005) An application for a Modified KdV equation by the decomposition method and finite element method. Appl Math Comp 169:971–981

    MathSciNet  MATH  Google Scholar 

  23. Geyikli T, Kaya D (2005) Comparison of the solutions obtained by B‑spline FEM and ADM of KdV equation. Appl Math Comp 169:146–156

    MathSciNet  MATH  Google Scholar 

  24. Grad H, Hu PN (1967) Unified shock profile in plasma. Phys Fluids 10:2596–2601

    ADS  Google Scholar 

  25. Gurtin M (1996) Generalized Ginzburg-Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92:178–192

    MathSciNet  MATH  Google Scholar 

  26. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers, I: Anomalous dispersion. Appl Phys Lett 23:142–144

    ADS  Google Scholar 

  27. Hayata K, Koshiba M (1995) Algebraic solitary‐wave solutions of a nonlinear Schrödinger equation. Phys Rev E 51:1499

    ADS  Google Scholar 

  28. Helal MA, Mehanna MS (2007) A comparative study between two different methods for solving the general Korteweg–de Vries equation. Chaos Solitons Fractals 33:725–739

    MathSciNet  ADS  MATH  Google Scholar 

  29. Hunter JK, Scheurle J (1988) Existence of perturbed solitary wave solutions to a model equation for water-waves. Physica D 32:253–268

    MathSciNet  ADS  MATH  Google Scholar 

  30. Ichikawa VH (1979) Topic on solitons in plasma. Physica Scripta 20:296–305

    MathSciNet  ADS  MATH  Google Scholar 

  31. Inan IE, Kaya D (2006) Some Exact Solutions to the Potential Kadomtsev–Petviashvili Equation. Phys Lett A 355:314–318

    MathSciNet  ADS  MATH  Google Scholar 

  32. Inan IE, Kaya D (2006) Some exact solutions to the potential Kadomtsev–Petviashvili equation. Phys Lett A 355:314–318

    MathSciNet  ADS  MATH  Google Scholar 

  33. Inan IE, Kaya D (2007) Exact solutions of the some nonlinear partial differential equations. Physica A 381:104–115

    MathSciNet  ADS  Google Scholar 

  34. Jonson RS (1970) A nonlinear equation incorporating damping and dispersion. J Phys Mech 42:49–60

    Google Scholar 

  35. Jonson RS (1972) Shallow water waves in a viscous fluid-the undular bore. Phys Fluids 15:1693–1699

    ADS  Google Scholar 

  36. Kadomtsev BB, Petviashvili VI (1970) On the Stability of Solitary Waves in Weakly Dispersive Media. Sov Phys Dokl 15:539–541

    ADS  MATH  Google Scholar 

  37. Kakutani T, Ona H (1969) Weak nonlinear hydomagnetic waves in a cod collision – free plasma. J Phys Soc Japan 26:1305–1319

    ADS  Google Scholar 

  38. Karpman VI, Krushkal EM (1969) Modulated waves in nonlinear dispersive media. Sov Phys JETP 28:277–281

    ADS  Google Scholar 

  39. Kawahara TJ (1972) Oscillatory Solitary Waves in Dispersive Media. Phys Soc Japan 33:260

    ADS  Google Scholar 

  40. Kaya D (2003) A Numerical Solution of the Sine‐Gordon Equation Using the Modified Decomposition Method. Appl Math Comp 143:309–317

    MathSciNet  MATH  Google Scholar 

  41. Kaya D (2006) The exact and numerical solitary‐wave solutions for generalized modified boussinesq equation. Phys Lett A 348:244–250

    MathSciNet  ADS  MATH  Google Scholar 

  42. Kaya D, Al-Khaled K (2007) A numerical comparison of a Kawahara equation. Phys Lett A 363:433–439

    ADS  MATH  Google Scholar 

  43. Kaya D, El-Sayed SM (2003) An Application of the Decomposition Method for the Generalized KdV and RLW Equations. Chaos Solitons Fractals 17:869–877

    MathSciNet  ADS  MATH  Google Scholar 

  44. Kaya D, El-Sayed SM (2003) Numerical soliton‐like solutions of the potential Kadomstev–Petviashvili equation by the decomposition method. Phys Lett A 320:192–199

    MathSciNet  ADS  MATH  Google Scholar 

  45. Kaya D, El-Sayed SM (2003) On a Generalized Fifth Order KdV Equations. Phys Lett A 310:44–51

    MathSciNet  ADS  MATH  Google Scholar 

  46. Khater AH, El-Kalaawy OH, Helal MA (1997) Two new classes of exact solutions for the KdV equation via Bäcklund transformations. Chaos Solitons Fractals 8:1901–1909

    MathSciNet  ADS  MATH  Google Scholar 

  47. Korteweg DJ, de Vries H (1895) On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philosophical Magazine 39:422–443

    MATH  Google Scholar 

  48. Li B, Chen Y, Zhang H (2003) Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation. Appl Math Comput 146:653–666

    MathSciNet  MATH  Google Scholar 

  49. Li D, Zhong C (1998) Global attractor for the Cahn–Hilliard system with fast growing nonlinearity. J Differ Equ 149(2):191

    MathSciNet  MATH  Google Scholar 

  50. Lian Z, Lou SY (2005) Symmetries and exact solutions of the Sharma–Tasso–Olver equation. Nonlinear Anal 63:1167–1177

    MathSciNet  Google Scholar 

  51. Edmundson D, Enns R (1996) Light Bullet Home Page. http://www.sfu.ca/%7Erenns/lbullets.html

  52. Ma WX (1993) An exact solution to two‐dimensional Korteweg-deVries-Burgers equation. J Phys A 26:17–20

    MathSciNet  ADS  Google Scholar 

  53. Parkas EJ (1994) Exact solutions to the two‐dimensional Korteweg-deVries-Burgers equation. J Phys A 27:497–501

    MathSciNet  ADS  Google Scholar 

  54. Parkes J, Munro S (1999) The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J Plasma Phys 62:305–317

    ADS  Google Scholar 

  55. Pawlik M, Rowlands G (1975) The propagation of solitary waves in piezoelectric semiconductors. J Phys C 8:1189–1204

    ADS  Google Scholar 

  56. Pelinovsky DE, Grimshaw RHJ (1996) An asymptotic approach to solitary wave instability and critical collapse in long-wave KdV-type evolution equations. Physica D 98:139–155

    MathSciNet  MATH  Google Scholar 

  57. Peregrine DH (1967) Long Waves on a Beach. J Fluid Mech 27:815–827

    ADS  MATH  Google Scholar 

  58. Peregrine DH (1996) Calculations of the Development of an Undular Bore. J Fluid Mech 25:321–330

    MathSciNet  ADS  Google Scholar 

  59. Polat N, Kaya D, Tutalar HI (2006) A analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl Math Comp 179:466–472

    MathSciNet  MATH  Google Scholar 

  60. Rayleigh L (1876) On Waves. The London and Edinburgh and Dublin Philosophical Magazine 5:257

    Google Scholar 

  61. Robert WM, Vsvolod VA, Yuri SK, John DL (1996) Optical solitons with power-law asymptotics. Phys Rev E 54:2936

    Google Scholar 

  62. Russell JS (1844) Report on Waves. 14th meeting of the British Association for the Advancement of Science. BAAS, London

    Google Scholar 

  63. Schimizu K, Ichikawa VH (1972) Auto modulation of ion oscillation modes in plasma. J Phys Soc Japan 33:789–792

    ADS  Google Scholar 

  64. Shawagfeh N, Kaya D (2004) Series solution to the Pochhammer–Chree equation and comparison with exact solutions. Comp Math Appl 47:1915–1920

    MathSciNet  MATH  Google Scholar 

  65. Su CH, Gardner CS (1969) Derivation of the Korteweg–de Vries and Burgers' equation. J Math Phys 10:536–539

    MathSciNet  ADS  MATH  Google Scholar 

  66. Ugurlu Y, Kaya D, Solution of the Cahn–Hilliard equation. Comput Math Appl (accepted for publication)

    Google Scholar 

  67. Wang M, Li LX, Zhang J (2007) Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms. Chaos Solitons Fract 31:594–601

    MathSciNet  ADS  MATH  Google Scholar 

  68. Wang S, Tang X, Lou SY (2004) Soliton fission and fusion: Burgers equation and Sharma–Tasso–Olver equation. Chaos Solitons Fractals 21:231–239

    MathSciNet  ADS  Google Scholar 

  69. Wazwaz AM (2002) Partial Differential Equations: Methods and Applications. Balkema, Rotterdam

    MATH  Google Scholar 

  70. Wazwaz AM (2007) Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities. Comm Nonlinear Sci Num Sim 12:904–909

    MathSciNet  MATH  Google Scholar 

  71. Wazwaz AM (2007) A variable separated ODE method for solving the triple sine‐Gordon and the triple sinh‐Gordon equations. Chaos Solitons Fractals 33:703–710

    MathSciNet  ADS  MATH  Google Scholar 

  72. Wazwaz AM (2007) The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl Math Comp 187:1131–1142

    MathSciNet  MATH  Google Scholar 

  73. Wazwaz AM, Helal MA (2004) Variants of the generalized fifth-order KdV equation with compact and noncompact structures. Chaos Solitons Fractals 21:579–589

    MathSciNet  ADS  MATH  Google Scholar 

  74. Wazwaz AM (2007) New solitons and kinks solutions to the Sharma–Tasso–Olver equation. Appl Math Comp 188:1205–1213

    MathSciNet  MATH  Google Scholar 

  75. Whitham GB (1974) Linear and Nonlinear Waves. Wiley, New York

    MATH  Google Scholar 

  76. Yan Z (2003) Integrability for two types of the (\( { 2 + 1 } \))-dimensional generalized Sharma–Tasso–Olver integro‐differential equations. MM Res 22:302–324

    Google Scholar 

  77. Zabusky NJ (1967) Nonlinear Partial Differential Equations. Academic Press, New York

    Google Scholar 

  78. Zabusky NJ (1967) A synergetic approach to problems of nonlinear dispersive wave propagations and interaction. In: Ames WF (ed) Proc. Symp. on Nonlinear Partial Differential equations. Academic Press, Boston, pp 223–258

    Google Scholar 

  79. Zabusky NJ, Kruskal MD (1965) Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    ADS  MATH  Google Scholar 

  80. Zhang W, Chang Q, Fan E (2003) Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order. J Math Anal Appl 287:1–18

    MathSciNet  MATH  Google Scholar 

  81. Zhou CT, He XT, Chen SG (1992) Basic dynamic properties of the high-order nonlinear Schrödinger equation. Phys Rev A 46:2277

    ADS  Google Scholar 

  82. Munro S, Parker EJ (1997) The stability of solitary‐wave Solutions to a modified Zakharov–Kuznetsov equation. J Plasma Phys 64:411–426

    ADS  Google Scholar 

Books and Reviews

  1. The following, referenced by the end of the paper, is intended to give some useful for further reading.

    Google Scholar 

  2. For another obtaining of the KdV equation for water waves, see Kevorkian and Cole (1981); one can see the work of the Johnson (1972) for a different water-wave application with variable depth, for waves on arbitrary shears in the work of Freeman and Johnson (1970) and Johnson (1980) for a review of one and two‐dimensional KdV equations. In addition to these; one can see the book of Drazin and Johnson (1989) for some numerical solutions of nonlinear evolution equations. In the work of the Zabusky, Kruskal and Deam (F1965) and Eilbeck (F1981), one can see the motion pictures of soliton interactions. See a comparison of the KdV equation with water wave experiments in Hammack and Segur (1974)

    Google Scholar 

  3. For further reading of the classical exact solutions of the nonlinear equations can be seen in the works: the Lax approach is described in Lax (1968); Calogero and Degasperis (1982, A.20), the Hirota's bilinear approach is developed in Matsuno (1984), the Bäckland transformations are described in Rogers and Shadwick (1982); Lamb (1980, Chap. 8), the Painleve properties is discussed by Ablowitz and Segur (1981, Sect. 3.8), In the book of Dodd, Eilbeck, Gibbon and Morris (1982, Chap. 10) can found review of the many numerical methods to solve nonlinear evolution equations and shown many of their solutions.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Kaya, D. (2009). Partial Differential Equations that Lead to Solitons. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_380

Download citation

Publish with us

Policies and ethics