Skip to main content

Percolation and Polymer Morphology and Rheology

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Elastic percolation networks described in the article by Duxbury (see also below), random resistor networks described in the articles by Hughes andBalberg, and a few continuum models [58] of heterogeneous materials providea comprehensive understanding of their transport properties. The purpose of this chapter is to describe and discuss applications of such percolationmodels to predicting the structure and rheolgy of an important class of disordered materials, namely, polymers and gel networks, and test their validityby comparing their predictions with the relevant experimental data.

The formation of the polymeric materials that we consider in this chapter is characterized by the existence of a percolation‐typetransition point; see below. The rigidity and linear elastic properties of disordered materials, including polymers, that are far from their percolationthreshold are well‐described and predicted by mean-field theories, such as the effective‐medium...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Branched polymers :

Large polymers below the gel point with radii larger than the correlation length

Chemical gels :

Gel networks in which the monomers are co‐valently bonded.

Critical gels:

The gel networks at the gel point

Elastic networks:

Networks in which each bond is an elastic element, such as a Hookean spring.

Gel point :

The point at which the critical gel network is formed for the first time.

Lattice animals :

Large percolation clusters below the percolation threshold with radii larger than the correlation length

Physical gels :

Gel networks in which the monomers or particles are connected through weak association.

Relaxation time spectrum :

The distribution of relaxation times that describes the linear viscoelastic behavior of liquids and solids.

Resistor networks :

Networks in which each bond is a resistor with a given conductivity.

Rigidity percolation :

Percolation networks in which each uncut bond is a Hookean spring, and there are no angle‐changing forces.

Sol:

The solvent + finite polymer clusters below the gel point

Bibliography

Primary Literature

  1. Adam M, Delsanti M, Durand D (1985) Mechanical measurements in a reaction bath during the polycondensation reaction near the gelation threshold. Macromolecules 18:2285

    ADS  Google Scholar 

  2. Adam M, Delsanti M, Durand D, Hild G, Munch JP (1981) Mechanical properties near gelation threshold, comparison with classical and 3d percolation theories. Pure Appl Chem 53:1489

    Google Scholar 

  3. Adam M, Delsanti M, Munch JP, Durand D (1987) Size and mass determination of clusters obtained by polycondensation near the gelation threshold. J Phys 48:1809

    Google Scholar 

  4. Adam M, Delsanti M, Okasha R, Hild G (1979) Viscosity study in the reaction bath of the radical copolymerisation of styrene divinylbenzene. J Phys Lett 40:539

    Google Scholar 

  5. Adam M, Lairez D, Karpasas M, Gottlieb M (1997) Static and dynamic properties of cross‐linked poly(dimethylsiloxane) pregel clusters. Macromolecules 30:5920

    ADS  Google Scholar 

  6. Adolf D, Martin JE, Wilcoxon JP (1990) Evolution of structure and viscoelasticity in an epoxy near the sol–gel transition. Macromolecules 23:527

    ADS  Google Scholar 

  7. Alexander S (1984) Is the elastic energy of amorphous materials rotationally invariant? J Phys 45:1939

    Google Scholar 

  8. Allain C, Limat L, Salomé L (1991) Description of the mechanical properties of gelling polymer solutions far from gelation threshold: generalized effective‐medium calculations of the superconductor‐conductor site percolation problem. Phys Rev A 43:5412

    Google Scholar 

  9. Allain C, Salomé L (1987) Hydrolysed polyacrylamide/Cr3 gelation: Critical behaviour of the rheological properties at the sol–gel transition. Polym Commun 28:109

    Google Scholar 

  10. Allain C, Salomé L (1987) Sol-gel transition of hydrolyzed polyacrylamide + chromium III: Rheological behavior versus cross-link concentration. Macromolecules 20:2957

    Google Scholar 

  11. Allain C, Salomé L (1990) Gelation of semidilute polymer solutions by ion complexation: Critical behavior of the rheological properties versus cross-link concentration. Macromolecules 23:981

    Google Scholar 

  12. Arbabi S, Sahimi M (1990) Critical properties of viscoelasticity of gels and elastic percolation networks. Phys Rev Lett 65:725

    ADS  Google Scholar 

  13. Arbabi S, Sahimi M (1990) On three‐dimensional elastic percolation networks with bond-bending forces. J Phys A 23:2211

    ADS  Google Scholar 

  14. Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I Percolation on elastic networks with central forces. Phys Rev B 47:695

    ADS  Google Scholar 

  15. Axelos MAV, Kolb M (1990) Crosslinked biopolymers: Experimental evidence for scalar percolation theory. Phys Rev Lett 64:1457

    ADS  Google Scholar 

  16. Bergman DJ (2003) Exact relation between critical exponents for elastic stiffness and electrical conductivity of percolating networks. Physica B 338:240

    MathSciNet  ADS  Google Scholar 

  17. Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendom Press, Oxford

    MATH  Google Scholar 

  18. Bouchaud E, Delsanti M, Adam M, Daoud M, Durand D (1986) Gelation and percolation: swelling effect. J Phys Lett 47:539

    Google Scholar 

  19. Brinker CJ, Scherer GW (1990) The Physics and Chemistry of Sol-Gel Processing Academic, San Diego

    Google Scholar 

  20. Candau SJ, Ankrim M, Munch JP, Rempp P, Hild G, Osaka R (1985) Physical Optics of Dynamical Phenomena in Macromolecular Systems. Berlin, De Gruyter, p 145

    Google Scholar 

  21. Carmesin I, Kremer K (1988) The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21:2819

    ADS  Google Scholar 

  22. Colby RH, Gilmor JR, Rubinstein M (1993) Dynamics of near‐critical polymer gels. Phys Rev E 48:3712

    ADS  Google Scholar 

  23. Daoud M (1988) Distribution of relaxation times near the gelation threshold. J Phys A 21, L973

    ADS  Google Scholar 

  24. Daoud M (2000) Viscoelasticity near the sol–gel transition. Macromolecules 33:3019

    ADS  Google Scholar 

  25. Daoud M, Coniglio A (1981) Singular behaviour of the free energy in the sol–gel transition. J Phys A 14:301

    ADS  Google Scholar 

  26. Daoud M, Family F, Jannik G (1984) Dilution and polydispersity in branched polymers. J Phys Lett 45:199

    Google Scholar 

  27. de Gennes (1977) PG Critical behaviour for vulcanization processes. J Phys Lett 38:L355

    ADS  Google Scholar 

  28. de Gennes PG (1972) Exponents for excluded volume problem as derived by the Wilson method. Phys Lett A 38:339

    ADS  Google Scholar 

  29. de Gennes PG (1976) On a relation between percolation theory and the elasticity of gels. J Phys Lett 37:L1

    Google Scholar 

  30. de Gennes PG (1979) Incoherent scattering near a sol gel transition. J Phys Lett 40:197

    ADS  Google Scholar 

  31. del Gado E, de Arcangelis LE, Coniglio A (1999) Elastic properties at the sol–gel transition. Europhys Lett 46:288

    ADS  Google Scholar 

  32. Devreux F, Boilot JP, Chaput F, Malier L, Axelos MAV (1993) Crossover from scalar to vectorial percolation in silica gelation. Phys Rev E 47:2689

    ADS  Google Scholar 

  33. Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. II Rheology of the sol–gel transition. J Phys Fr 49:333

    Google Scholar 

  34. Durand D, Delsanti M, Adam M, Luck JM (1987) Frequency dependence of viscoelastic properties of branched polymers near gelation threshold. Europhys Lett 3:297

    ADS  Google Scholar 

  35. Fadda GC, Lairez D, Pelta J (2001) Critical behavior of gelation probed by the dynamics of latex spheres. Phys Rev E 63:061405

    ADS  Google Scholar 

  36. Family F, Coniglio A (1980) Crossover from percolation to random animals and compact clusters. J Phys A 13:L403

    MathSciNet  ADS  Google Scholar 

  37. Farago O, Kantor Y (2000) Entropic elasticity of two‐dimensional self‐avoiding percolation systems. Phys Rev Lett 85:2533

    ADS  Google Scholar 

  38. Feng S, Thorpe MF, Garboczi E (1985) Effective‐medium theory of percolation on central‐force elastic networks. Phys Rev B 31:276

    ADS  Google Scholar 

  39. Flory PJ (1941) Molecular size distribution in three dimensional polymers. Gelation I. J Am Chem Soc 63:3083

    Google Scholar 

  40. Gauthier MB, Guyon E (1980) Critical elasticity of polyacrylamide above its gel point. J Phys Lett 41:503

    Google Scholar 

  41. Gauthier MB, Guyon E, Roux S, Gits S, Lefaucheux F (1987) Critical viscoelastic study of the gelation of silica particles. J Phys 48:869

    Google Scholar 

  42. Gordon M, Torkington JA (1981) Scrutiny of the critical exponent paradigm, as exemplified by gelation. Pure Appl Chem 53:1461

    Google Scholar 

  43. Hodgson DF, Amis EJ (1990) Dynamic viscoelastic characterization of sol–gel reactions. Macromolecules 23:2512

    ADS  Google Scholar 

  44. Holly EE, Venkataraman SK, Chambon F, Winter HH (1988) Fourier transform mechanical spectroscopy of viscoelastic materials with transient structures. J Non-Newtonian Fluid Mech 27:17

    Google Scholar 

  45. Kantor Y, Webman (1984) I Elastic properties of random percolating systems. Phys Rev Lett 52:1891

    ADS  Google Scholar 

  46. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574

    ADS  Google Scholar 

  47. Kremer K (1998) Numerical studies of polymer networks and gels. Philos Mag B 77:569

    ADS  Google Scholar 

  48. Lapp A, Leibler L, Schosseler F,Strazielle C (1989) Scaling behaviour of pregel sols obtained by end‐linking of linear chains. Macromolecules 22:2871

    ADS  Google Scholar 

  49. Leibler L, Schosseler F (1985) Gelation of polymer solutions: an experimental verification of the scaling behavior of the size distribution function. Phys Rev Lett 55:1110

    ADS  Google Scholar 

  50. Lin YG, Mallin DT, Chien JCW, Winter HH (1991) Dynamical mechanical measurement of crystallization‐induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24:850

    ADS  Google Scholar 

  51. Lubensky TC, Isaacson J (1978) Field Theory for the statistics of branched polymers, gelation and vulcanization. Phys Rev Lett 41:829

    ADS  Google Scholar 

  52. Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity of near‐critical gels. Phys Rev Lett 61:2620

    ADS  Google Scholar 

  53. Martin JE, Wilcoxon JP (1988) Critical dynamics of the sol–gel transition. Phys Rev Lett 61:373

    ADS  Google Scholar 

  54. Martins JL, Zunger A (1984) Bond lengths around isovalent impurities and in semiconductor solid solutions. Phys Rev B 30:6217

    ADS  Google Scholar 

  55. Parisi G, Sourlas N (1981) Critical behavior of branched polymers in the Lee-Yang edge singularity. Phys Rev Lett 46:891

    MathSciNet  ADS  Google Scholar 

  56. Patton E, Wesson JA, Rubinstein M, Wilson JE, Oppenheimer LE (1989) Scaling properties of branched polyesters. Macromolecules 22:1946

    ADS  Google Scholar 

  57. Plischke M (2006) Critical behavior of entropic shear rigidity. Phys Rev. E 73:061406

    Google Scholar 

  58. Plischke M (2007) Rigidity of disordered networks with bond-bending forces. Phys Rev E 76:021401

    ADS  Google Scholar 

  59. Plischke M, Joós B (1998) Entropic elasticity of diluted central force networks. Phys Rev Lett 80:4907

    Google Scholar 

  60. Plischke M, Vernon DC, Joós B, Zhou Z (1999) Entropic rigidity of randomly diluted two- and three‐dimensional networks. Phys Rev E 60:3129

    Google Scholar 

  61. Ross MSB (2007) Biopolymer gelation‐exponents and critical exponents. Polym Bull 58:119

    Google Scholar 

  62. Sahimi M (1986) Relation between the critical exponent of elastic percolation networks and the dynamical and geometrical exponents. J Phys C 19:79

    ADS  Google Scholar 

  63. Sahimi M (2003) Heterogeneous Materials I. Springer, New York

    MATH  Google Scholar 

  64. Sahimi M, Arbabi S (1993) Mechanics of disordered solids. II Percolation on elastic networks with bond-bending forces. Phys Rev B 47:703

    ADS  Google Scholar 

  65. Sahimi M, Goddard JD (1985) Superelastic percolation networks and the viscosity of gels. Phys Rev B 32:1869

    ADS  Google Scholar 

  66. Schmidt M,Burchard W (1981) Critical exponents in polymers: A sol–gel study of anionically prepared styrene‐divinylbenzene copolymers. Macromolecules 14:370

    ADS  Google Scholar 

  67. Stauffer D (1976) Gelation in concentrated critically branched polymer solutions. Percolation scaling theory of intramolecular bond cycles. J Chem Soc Faraday Trans II 72:1354

    Google Scholar 

  68. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched‐chain polymers. J Chem Phys 11:45

    ADS  Google Scholar 

  69. Takahashi M, Yokoyama K, Masuda T (1994) Dynamic viscoelasticity and critical exponents in sol–gel transition of an end‐linking polymer. J Chem Phys 101:798

    ADS  Google Scholar 

  70. Tokita M, Niki R, Hikichi K (1984) Percolation theory and elastic modulus of gel. J Phys Soc Jpn 53:480

    ADS  Google Scholar 

  71. Wang J (1989) The bond-bending model in three dimensions. J Phys A 22:291

    ADS  Google Scholar 

  72. Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165

    Google Scholar 

  73. Woignier T, Phalippou J, Sempere R, Pelons J (1988) Analysis of the elastic behaviour of silica aerogel taken as a percolating system. J Phys Fr 49:289

    Google Scholar 

  74. X Xing, Muthupadhyay S, Goldbart PM (2004) Scaling of entropic shear rigidity. Phys Rev Lett 93:225701

    ADS  Google Scholar 

Books and Reviews

  1. Brinker CJ, Scherer GW (1990) The Physics and Chemistry of Sol-Gel. Processing Academic, San Diego

    Google Scholar 

  2. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithac

    Google Scholar 

  3. Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York

    Google Scholar 

  4. Stauffer D, Aharony A (1994) Introduction to Percolation Theory, 2nd revised ed. Taylor and Francis, London

    Google Scholar 

  5. Sahimi M (1994) Applications of Percolation Theory. Taylor and Francis, London

    Google Scholar 

  6. Sahimi M (2003) Heterogeneous Materials I & II. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Sahimi, M. (2009). Percolation and Polymer Morphology and Rheology. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_388

Download citation

Publish with us

Policies and ethics