Skip to main content

Percolation in Porous Media

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 671 Accesses

Definition of the Subject

Porous media are important in many areas including hydrocarbon reservoir engineering, hydrology and environmental engineering. They are alsoimportant in, for example, fuel cells, many industrial process and biological systems (lungs, bones, capillary networks and termite nests are allbiological examples). Understanding the structure of porous media and the physics of fluid flow in porous media is of great interest. For example,choosing the efficient recovery techniques by reservoir engineers requires understanding of how different fluids and the porous media interact atdifferent scales by simulating the fluid flow in the reservoir under variety of conditions. The exchange and transport of reagents in fuels cells governstheir efficiency. Percolation theory which describes the connectivity of a system mathematically [22,100] has also many important applications from the spread ofdiseases and forest fires to the connectivity of geological entities (e.?g.,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Anisotropy:

There is anisotropy when the global physical property of the system is direction dependent.

Breakthrough time:

The time for convection of a single phase passive tracer between an injection well and a production well.

Connectivity:

The fraction of occupied sites belonging to the percolating clusters i.?e. represents the strength of the percolating cluster.

Continuum percolation:

Percolation on continuum spaces with randomly distributed geometrical objects where there is no lattice at all.

Capillary dominated flow:

A flow regime in which the only dominant driving force is due to capillarity.

Fracture:

Any discontinuity within a rock mass which developed as a response to stress.

Field scale:

This represents large scale heterogeneities at reservoir level or the kilometer scale.

Finite size scaling:

A scaling law within percolation theory which deals with the effects of the finite boundaries.

Invasion percolation:

Another kind of percolation theory appropriate for describing the structure and amounts of two immiscible fluids at breakthrough.

Modeling:

Describing physical phenomena under nature's law in some mathematical relations, e.?g. governing fluid flow, to better understand the system and to predict its behavior.

Porous media:

A medium consists of rock grains and disordered void spaces of approximately 10–100?µm across usually occupied by oil, water and gas in a typical hydrocarbon reservoir and characterized by porosity and permeability.

Pore scale:

This represents pore throat level or the micron scale.

Permeability:

The “conductance” of the rock to fluid flow determined from Darcy's Law that the flow rate is proportion to the applied pressure gradient and inversely proportional to the fluid viscosity, the constant of proportionality is the permeability.

Percolation threshold:

A particular value of occupancy probability at which one large cluster spans the whole region.

Simulation:

Numerical model for solution to the mathematical equations which be able to predict the physical behavior of the system.

Uncertainty:

The estimated amount or percentage by which an observed or calculated value may differ from the true value.

Bibliography

  1. Adler PM, Thovert JF (1999) Fractures and fracture networks. Kluwer,London

    Google Scholar 

  2. Andrade JS, Buldyrev SV, Dokholyan NV, Havlin S, Lee Y, King PR, Paul G, StanleyHE (2000) Flow between two sites in percolation systems. Phys Rev E 62:8270–8281

    ADS  Google Scholar 

  3. Baker R, Paul G, Sreenivasan S, Stanley HE (2002) Continuum percolationthreshold for interpenetrating squares and cubes. Phys Rev E 66:046136

    ADS  Google Scholar 

  4. Balberg I (1985) Universal percolation threshold limits in the continuum. PhysRev B 31(6):4053–4055

    ADS  Google Scholar 

  5. Balberg I, Binenbaum N, Anderson CH (1983) Critical behaviour of the twodimensional sticks system. Phys Rev Lett B 51(18):1605–1608

    ADS  Google Scholar 

  6. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and itsrelation to the onset of percolation. Phys Rev B 30(7):3933–3943

    ADS  Google Scholar 

  7. Barthelemy M, Buldyrev SV, Havlin S, Stanely HE (1999) Scaling for the criticalpercolation backbone. Phys Rev E 60(2):R1123–R1125

    ADS  Google Scholar 

  8. Bear J (1972) Dynamics of fluids in porous media. American Elsevier PublishingCompany, New York

    MATH  Google Scholar 

  9. Bear J, Tsang CF, de Marsily G (1993) Flow and contaminant transport infractured rock. Academic Press, San Diego, pp 169–231

    Google Scholar 

  10. Belayneh M, Masihi M, King PR, Matthäi SK (2006) Prediction of fractureuncertainty using percolation approach: model test with field data. J Geophys Eng 3:219–229

    Google Scholar 

  11. Berkowitz B (1995) Analysis of fracture network connectivity using percolationtheory. Math Geol 27(4):467–483

    Google Scholar 

  12. Berkowitz B (2002) Characterizing flow and transport in fractured geologicalmedia: a review. Adv Water Resour 25:861–884

    Google Scholar 

  13. Berkowitz B, Balberg I (1993) Percolation theory and its application to groundwater hydrology. Water Resour Res 29(4):775–794

    ADS  Google Scholar 

  14. Berkowitz B, Bour O, Davy P, Odling N (2000) Scaling of fracture connectivityin geological formations. Geophys Res Lett 27(14):2061–2064

    ADS  Google Scholar 

  15. Birovljev A, Furuberg L, Feder J, Jssang T, Mly KJ, Aharony A (1991) Gravityinvasion percolation in two dimensions: Experiment and simulation. Phys Rev Lett 67:584–587

    ADS  Google Scholar 

  16. Blunt MJ, King PR (1990) Macroscopic parameters from simulations of pore scaleflow. Phys Rev A 42(12):4780–4789

    ADS  Google Scholar 

  17. Blunt MJ, King M, Scher H (1992) Simulation and theory of two phase flow inporous media. Phys Rev A 46(12):7680–7699

    ADS  Google Scholar 

  18. Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001)Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383

    ADS  Google Scholar 

  19. Bour O, Davy P (1997) Connectivity of random fault networks followinga power law fault length distribution. Water Resour Res 33(7):1567–1583

    ADS  Google Scholar 

  20. Bour O, Davy P (1998) On the connectivity of three dimensional fault networks.Water Resour Res 34(10):2611–2622

    ADS  Google Scholar 

  21. Bour O, Davy P (1999) Clustering and size distributions of fault pattern:theory and measurements. Geophys Res Lett Press, 26:2001–2004

    Google Scholar 

  22. Broadbent I, Hammersley JM (1957) Percolation processes 1. Crystals and mazes.Proc Camb Philos Soc 53:629–641

    MathSciNet  ADS  MATH  Google Scholar 

  23. Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B,Peaudecerf P (1990) Modeling fracture flow with stochastic discrete fracture network: calibration and validation, 1. the flow model. Water Resour Res26(3):479–489

    ADS  Google Scholar 

  24. Chandler R, Koplik J, Lerman K, Willemsen JF (1982) Capillary displacement andpercolation in porous media. J Fluid Mech 119:249–267

    ADS  MATH  Google Scholar 

  25. Charlaix E (1986) Percolation threshold of random array of discs:a numerical simulation. J Phys A Math Gen 19(9):L533–L536

    ADS  Google Scholar 

  26. Chen JD, Wilkinson D (1985) Pore-scale viscous fingering in porous media.Phys Rev Lett 55:1892–1895

    ADS  Google Scholar 

  27. Choi HS, Talbot J, Tarjus G, Viot P (1995) Percolation and structuralproperties of particle deposits. Phys Rev E 51(2):1353–1363

    ADS  Google Scholar 

  28. Consiglio R, Zouain RNA, Baker DR, Paul G, Stanley HE (2004) Symmetry of thecontinuum percolation threshold in systems of two different size objects. Physica A 343:343–347

    ADS  Google Scholar 

  29. Darcel C, Bour O, Davy P (2003) Cross-correlation between length and positionin real fracture networks. Geophys Res Lett 30(12):52.1–52.4

    Google Scholar 

  30. Darcel C, Bour O, Davy P (2003) Stereological analysis of fractal fracturenetworks. J Geophys Res 108(B9):ETG13.1–ETG13.14

    Google Scholar 

  31. Darcel C, Bour O, Davy P, De Dreuzy JR (2003) Connectivity properties of twodimensional fracture networks with stochastic fractal correlation. Water Resour Res 39(10):SBH1.1–SBH1.13

    Google Scholar 

  32. Da Silva LR, Paul G, Havlin S, Baker DR, Stanely HE (2003) Scaling of clustermass between two lines in 3d percolation. Physica A 318:307–318

    ADS  MATH  Google Scholar 

  33. De Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial correlationof fracture centres on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res40:W01502.1–W01502.11

    Google Scholar 

  34. Deutsch CV (2002) Geostatistical Reservoir Modeling. Oxford UniversityPress, New York

    Google Scholar 

  35. Diaz CE, Chatzis I, Dullien FAL (1987) Simulation of capillary pressure curvesusing bond correlated site percolation on a simple cubic network. Transp Porous Media 2:215–240

    Google Scholar 

  36. Dijkstra T, Bartelds GA, Bruining J, Hassanizadeh M (1999) Dynamic Pore-Scalenetwork for Two-Phase Flow. In: Proceedings on the international workshop on characterization and measurement of hydraulic properties of unsaturatedporous media, Riverside, pp 63–71

    Google Scholar 

  37. Dokholyan NV, Lee Y, Buldyrew SV, Havlin S, King PR, Stanley HE (1998) Scalingof the distribution of shortest paths in percolation. J Stat Phys 93:603–613

    ADS  MATH  Google Scholar 

  38. Dullien FAL (1992) Porous media fluid transport and pore structure, 2nd edn.Academic Press, San Diego

    Google Scholar 

  39. Fatt (1956) The network model of porous media III. dynamic properties ofnetworks with tube radius distribution. Trans Amer Inst Min, Metall, Petrol Eng 207:164–181

    Google Scholar 

  40. Fenwick DH, Blunt MJ (1998) Three-dimensional modeling of three phaseimbibition and drainage. Adv Water Resour 21(2):121–143

    Google Scholar 

  41. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolationthreshold of overlapping ellipsoids. Phys Rev E 52(1):819–827

    ADS  Google Scholar 

  42. Gawlinski ET, Stanley HE (1981) Continuum percolation in two dimensions: MonteCarlo tests of scaling and universality for non-interacting discs. J Phys A Math Gen 14:L291–L299

    MathSciNet  ADS  Google Scholar 

  43. Harris CK (1992) Effective medium treatment of flow through anisotropicfracture system-Improved permeability estimates using a new lattice mapping. Trans Porous Media 9:287–295

    Google Scholar 

  44. Harter T (2005) Finite size scaling analysis of percolation in threedimensional correlated binary Markov chain random fields. Phys Rev E 72:026120.1–26120.7

    MathSciNet  ADS  Google Scholar 

  45. Heffer KJ, Bervan TG (1990) Scaling relationships in natural fractures-data,theory and applications. Paper SPE 20981 presented at Europec conference, The Hague, 20–24 Oct

    Google Scholar 

  46. Heiba AA, Sahimi M, Scriven LE, Davis HT (1992) Percolation theory oftwo-phase relative permeability. SPE Reserv Eng 7:123–132

    Google Scholar 

  47. Homsy GM (1987) Viscous fingering in porous media. Annu Rev Fluid Mech19:271–311

    ADS  Google Scholar 

  48. Hoshen J, Kopelman R (1976) Percolation and cluster distribution, I, clustermultiple labelling technique and critical concentration algorithm. Phys Rev B 14(8):3438–3445

    ADS  Google Scholar 

  49. Hovi J-P, Aharony A (1996) Scaling and universality in the spanningprobability for percolation. Phys Rev E 53:235

    ADS  Google Scholar 

  50. King PR (1990) The connectivity and conductivity of overlapping sandbodies.In: Buller AT (ed) North Sea Oil and Gas Reservoirs II. Graham and Trotman, London, pp 353–361

    Google Scholar 

  51. King PR, Buldyrev SV, Dokholyan NV, Havlin S, Lee Y, Paul G (2001) Predictingoil recovery using percolation theory. Petrol Geosci 7:S105–S107

    Google Scholar 

  52. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys45:574–588

    ADS  Google Scholar 

  53. Knackstedt MA, Sheppard AP, Sahimi M (2001) Pore network modelling oftwo-phase flow in porous rock: the effect of correlated heterogeneity. Adv Water Resour 24(3–4):257–277

    Google Scholar 

  54. Koplik J, Lasseter TJ (1985) Two-phase flow in random network models of porousmedia. SPE J February:89–100

    Google Scholar 

  55. Koudine N, Garcia RG, Thovert JF, Adler PM (1998) Permeability of threedimensional fracture networks. Phys Rev E 57(4):4466–4479

    ADS  Google Scholar 

  56. Langlands RP, Pichet C, Pouliot P, Saint Aubin Y (1992) On the universality ofcrossing probabilities in two-dimensional percolation. J Stat Phys 67:553

    MathSciNet  ADS  MATH  Google Scholar 

  57. Lee SB, Torquato S (1990) Monte Carlo study of correlated continuumpercolation: Universality and percolation thresholds. Phys Rev A 41(10):5338–5344

    ADS  Google Scholar 

  58. Lee Y, Andrade JS, Buldyrev SV, Dokholyan NV, Havlin S, King PR, Paul G,Stanley HE (1999) Traveling time and traveling length in critical percolation clusters. Phys Rev E 60:3425–3428

    ADS  Google Scholar 

  59. Lenormand R, Bories S (1980) CR Acad Sci, Paris B291:279

    Google Scholar 

  60. Lin C-Y, Hu C-K (1998) Universal finite size scaling functions for percolationon three dimensional lattices. Phys Rev E 58(2):1521–1527

    MathSciNet  ADS  Google Scholar 

  61. Lorenz CD, Ziff RM (2001) Precise determination of the critical percolationthreshold for the three dimensional Swiss cheese model using a growth algorithm. J Chem Phys 114(8):3659–3661

    ADS  Google Scholar 

  62. Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York,pp 468

    MATH  Google Scholar 

  63. Mani V, Mohanty KK (1998) Pore-level network modeling of three-phase capillarypressure and relative permeability curves. SPE J 3:238–248

    Google Scholar 

  64. Marrink SJ, Knackstedt MA (1999) Percolation thresholds on elongated lattices.J Phys A Math Gen 32:L461–L466

    MathSciNet  ADS  MATH  Google Scholar 

  65. Masihi M, King PR (2007) A correlated fracture network: modeling andpercolation properties. Water Resour Res J 43. doi: 10.1029/2006WR005331

    Google Scholar 

  66. Masihi M, King PR, Nurafza P (2005) Fast estimation of performance parametersin fractured reservoirs using percolation theory. Paper SPE 94186 presented at the 14th Biennial Conference, Madrid, 13–16June

    Google Scholar 

  67. Masihi M, King PR, Nurafza P (2006) Connectivity prediction in fracturedreservoirs with variable fracture size; analysis and validation. Paper SPE 100229 presented at the SPE Europec, Vienna, 12–15June

    Google Scholar 

  68. Masihi M, King PR, Nurafza P (2006) Connectivity of fracture networks: theeffects of anisotropy and spatial correlation. Paper CMWR XVI-99 presented at the Computational Methods in Water Resources conference, Copenhagen,19–22 June

    Google Scholar 

  69. Masihi M, King PR, Nurafza P (2006) The Effect of Anisotropy on Finite SizeScaling in Percolation Theory. Phys Rev E 74:042102

    ADS  Google Scholar 

  70. Masihi M, King PR, Nurafza P (2007) Fast estimation of connectivity infractured reservoirs using percolation theory. SPE J 12(2):167–178

    Google Scholar 

  71. Maximenko A, Kadet VV (2000) Determination of relative permeabilities usingthe network models of porous media. J Petrol Sci Eng 28(3):145–152

    Google Scholar 

  72. Méheust Y, Løvoll G, Måløy KJ, Schmittbuhl J (2002) Interfacescaling in a 2d porous medium under combined viscous, gravity and capillary effects. Phys Rev E 66:51603–51615

    Google Scholar 

  73. Mohanty KK, Salter SJ (1982) Multiphase flow in porous media: II Pore-levelmodeling. Paper SPE 11018, Proceedings of the 57th SPE Annual Fall Technical Conference and Exhibition, New Orleans, 26–29Sept

    Google Scholar 

  74. Monetti RA, Albano EV (1991) Critical behaviour of the site percolation modelon the square lattice in a \( { L\times M } \) geometry. Z Phys B Condensed Matter 82:129–134

    ADS  Google Scholar 

  75. Mourzenko VV, Thovert JF, Adler PM (2005) Percolation of three dimensionalfracture networks with power law size distribution. Phys Rev E 72:036103.1–036103.14

    ADS  Google Scholar 

  76. Nurafza P, King PR, Masihi M (2006) Facies connectivity modelling; analysisand field study. Paper SPE 100333 presented at the SPE Europec, Vienna, 12–15 June

    Google Scholar 

  77. Nurafza P, Masihi M, King PR (2006) Connectivity modeling of heterogeneoussystems: analysis and field study. Paper CMWR XVI-189 presented at the Computational Methods in Water Resources conference, Copenhagen, Denmark,19–22 June

    Google Scholar 

  78. Odling NE (1997) Scaling and connectivity of joint systems in sandstones fromwestern Norway. J Struct Geol 19(10):1257–1271

    ADS  Google Scholar 

  79. Odling NE, Gillespie P, Bourgine B, Castaing C, Chiles J-P, Christensen NP,Fillion E, Genter A, Olsen C, Thrane L, Trice R, Aarseth E, Walsh JJ, Watterson J (1999) Variations in fracture system geometry and their implications forfluid flow in fractured hydrocarbon reservoirs. Petrol Geosci 5:373–384

    Google Scholar 

  80. Olson JE (2003) Sublinear scaling of fracture aperture versus length: anexception or the rule? J Geophys Res 108(B9):ETG3.1–ETG3.11

    Google Scholar 

  81. Øren PE, Bakke S, Arntzen OJ (1998) Extending predictive capabilities tonetwork models. SPE J 3(4):324–336

    Google Scholar 

  82. Paterson L, Lee JY, Pinczewski WV (1997) Three-phase relative permeability inheterogeneous formations. Paper SPE 38882, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, 5–8Oct

    Google Scholar 

  83. Pereira GG, Pinczewski WV, Chan DYC, Paterson L, Øren PE (1996)Pore-scale network model for drainage-dominated three-phase flow in porous media. Trans Porous Media 24(2):167–201

    Google Scholar 

  84. Pike GE, Seager CH (1974) Percolation and conductivity: a computer studyI. Phys Rev B 10(4):1421–1434

    ADS  Google Scholar 

  85. Piri M, Blunt MJ (2002) Pore-scale modeling of three-phase flow in mixed-wetsystems. Paper SPE 77726, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September-2October.

    Google Scholar 

  86. Prakash S, Havlin S, Schwartz M, Stanley HE (1992) Structural and long-rangecorrelated percolation. Phys Rev A 46(4):R1724–1727

    ADS  Google Scholar 

  87. Priest SD, Hudson JA (1981) Estimation of discontinuity spacings and tracelength using scan line surveys. Int J Rock Mech, Min Sci Geomech Abstr 18:185–197

    Google Scholar 

  88. Renshaw CE (1999) Connectivity of joint networks with power law lengthdistributions. Water Resour Res 35(9):2661–2670

    ADS  Google Scholar 

  89. Rives T, Razack M, Pett JP, Rawnsley KD (1992) Joint spacing: analogue andnumerical simulation. J Struct Geol 14(8/9):925–937

    ADS  Google Scholar 

  90. Robinson PC (1983) Connectivity of fracture systems-a percolation theoryapproach. J Phys A Math General 16:605–614

    ADS  Google Scholar 

  91. Robinson PC (1984) Numerical calculations of critical densities for lines andplanes. J Phys A Math General 17(14):2823–2830

    ADS  Google Scholar 

  92. Rossen WR, Gu Y, Lake LW (2000) Connectivity and permeability in fracturenetworks obeying power law statistics. Paper SPE 59720, Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, 21–23March

    Google Scholar 

  93. Roslien J, King PR, Buldyrev S, Lopez E, Stanley HE (2004) Prediction oilproduction conditioned on breakthrough time. Petrol Geosc (submitted)

    Google Scholar 

  94. Rouleau A, Gale JE (1985) Statistical characterization of the fracture systemin the Stripa Granite, Sweden. International J Rock Mech, Min Sci Geomech Abstr 22(6):353–367

    Google Scholar 

  95. Sahimi M (1994) Applications of percolation theory. Taylor and Francis,London

    Google Scholar 

  96. Sahimi M (1995) Flow and transport in porous media and fractured Rock. VCHpublication, London, pp 103–157

    MATH  Google Scholar 

  97. Schmittbuhl J, Vilotte JP, Roux S (1993) Percolation through self affinesurfaces. J Phys A Math General 26:6115–6133

    ADS  Google Scholar 

  98. Segall P, Pollard DD (1983) Joint formation in granitic rock in the SierraNevada. Geol Soc Am Bull 94:563–575

    Google Scholar 

  99. Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res5(6):1273–1289

    ADS  Google Scholar 

  100. Soll WE, Celia MA (1993) A modified percolation approach to simulatingthree-fluid capillary pressure-saturation relationships. Adv Water Resour 16:107–126

    Google Scholar 

  101. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor andFrancis, London

    Google Scholar 

  102. Valvatne PH, Blunt MJ (2003) Predictive pore-scale network modeling. PaperSPE 84550, Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5–8 Oct

    Google Scholar 

  103. Van Dijk JP, Bello M, Toscano C, Bersani A, Nardon S (2000) Tectonic modeland three-dimensional fracture analysis of Monte Alpi-Southern Apennines. Tectonophysics 324:203–237

    Google Scholar 

  104. Vermilye JM, Scholz CH (1995) Relationship between vein length and aperture.J Struct Geol 17(3):423–434

    ADS  Google Scholar 

  105. Watanabe K, Takahashi H (1995) Fractal geometry characterization ofgeothermal reservoir fracture networks. J Geophys Res 100(B1):521–528

    ADS  Google Scholar 

  106. Watanabe H, Yukawa S, Ito N, Hu C-K (2004) Superscaling of percolation onrectangular domains. Phys Rev Lett 93(19):190601.1–190601.4

    ADS  Google Scholar 

  107. Wilkinson D (1984) Percolation model of immiscible displacement in thepresence of buoyancy forces. Phys Rev A 34(1):520–531

    ADS  Google Scholar 

  108. Wilkinson D, Willemsen JF (1983) Invasion percolation: a new form ofpercolation theory. J Phys A Math General 16(16):3365–3376

    MathSciNet  ADS  Google Scholar 

  109. Xia W, Thrope MF (1988) Percolation properties of random ellipses. Phys RevA 38(5):2650–2656

    MathSciNet  ADS  Google Scholar 

  110. Zhang X, Sanderson DJ (2002) Numerical modelling and analysis of fluid flowand deformation of fractured rock masses. Elsevier Science, Pergaman

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

King, P., Masihi, M. (2009). Percolation in Porous Media. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_389

Download citation

Publish with us

Policies and ethics