Skip to main content

Perturbation Analysis of Parametric Resonance

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Parametric resonance arises in mechanics in systems with external sources of energy and for certain parameter values. Typical examples are thependulum with oscillating support and a more specific linearization of this pendulum, the Mathieu equation in the form

$$ \ddot{x} + (a + b \cos (t)) x = 0\:. $$

The time-dependent term represents the excitation. Tradition has it that parametric resonance is usually not considered in the context of systems with external excitation of the form \( { \dot{x}= f(x) + \phi(t) } \), but for systems where time-dependence arises in the coefficients of the equation. Mechanically this means usually periodically varying stiffness, mass or load, in fluid or plasma mechanics one can think of frequency modulation or density fluctuation, in mathematical biology of periodic environmental changes. The term ‘parametric’ refers to the dependence on parameters and certain resonances arising for special values of the parameters. In the case...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Coexistence:

The special case when all the independent solutions of a linear, T-periodic ODE are T-periodic.

Hill's equation:

A second order ODE of the form \( { \ddot{x} + p(t) x = 0 } \), with \( { p(t)\,T } \)-periodic.

Instability pockets:

Finite domains, usually intersections of instability tongues, where the trivial solution of linear, T-periodic ODEs is unstable.

Instability tongues:

Domains in parameter space where the trivial solution of linear, T-periodic ODEs is unstable.

Mathieu equation:

An ODE of the form \( \ddot{x} + (a + b \cos (t)) x = 0 \).

Parametric resonance:

Resonance excitation arising for special values of coefficients, frequencies and other parameters in T-periodic ODEs.

Quasi-periodic:

A function of the form \( { \sum_{i=1}^n f_i(t) } \) with \( { f_i(t)\,T_i } \)-periodic, n finite, and the periods \( { T_i } \) independent over R.

Sum resonance:

A parametric resonance arising in the case of at least three frequencies in a T-periodic ODE.

Bibliography

Primary Literature

  1. Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, New York

    MATH  Google Scholar 

  2. Banichuk NV, Bratus AS, Myshkis AD (1989) Stabilizing and destabilizing effects in nonconservative systems. PMM USSR 53(2):158–164

    MathSciNet  MATH  Google Scholar 

  3. Bogoliubov NN, Mitropolskii Yu A (1961) Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach, New York

    Google Scholar 

  4. Bolotin VV (1963) Non-conservative problems of the theory of elastic stability. Pergamon Press, Oxford

    Google Scholar 

  5. Broer HW, Vegter G (1992) Bifurcational aspects of parametric resonance, vol 1. In: Jones CKRT, Kirchgraber U, Walther HO (eds) Expositions in dynamical systems. Springer, Berlin, pp 1–51

    Google Scholar 

  6. Broer HW, Levi M (1995) Geometrical aspects of stability theory for Hill's equation. Arch Rat Mech Anal 131:225–240

    MathSciNet  MATH  Google Scholar 

  7. Broer HW, Simó C (1998) Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol Soc Brasil Mat 29:253–293

    Google Scholar 

  8. Broer HW, Hoveijn I, Van Noort M (1998) A reversible bifurcation analysis of the inverted pendulum. Physica D 112:50–63

    MathSciNet  ADS  MATH  Google Scholar 

  9. Broer HW, Hoveijn I, Van Noort M, Vegter G (1999) The inverted pendulum: a singularity theory approach. J Diff Eqs 157:120–149

    MATH  Google Scholar 

  10. Broer HW, Simó C (2000) Resonance tongues in Hill's equations: a geometric approach. J Differ Equ 166:290–327

    Google Scholar 

  11. Broer HW, Puig J, Simó C (2003) Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Commun Math Phys 241:467–503

    Google Scholar 

  12. Broer HW, Hoveijn I, Van Noort M, Simó C, Vegter G (2005) The parametrically forced pendulum: a case study in \( { 1 \frac{1}{2} } \) degree of freedom. J Dyn Diff Equ 16:897–947

    Google Scholar 

  13. Cicogna G, Gaeta G (1999) Symmetry and perturbation theory in nonlinear dynamics. Lecture Notes Physics, vol 57. Springer, Berlin

    Google Scholar 

  14. Fatimah S, Ruijgrok M (2002) Bifurcation in an autoparametric system in 1:1 internal resonance with parametric excitation. Int J Non-Linear Mech 37:297–308

    MathSciNet  MATH  Google Scholar 

  15. Golubitsky M, Schaeffer D (1985) Singularities and groups in bifurcation theory. Springer, New York

    MATH  Google Scholar 

  16. Hale J (1963) Oscillation in nonlinear systems. McGraw-Hill, New York, 1963; Dover, New York, 1992

    Google Scholar 

  17. Hoveijn I, Ruijgrok M (1995) The stability of parametrically forced coupled oscillators in sum resonance. ZAMP 46:383–392

    MathSciNet  ADS  Google Scholar 

  18. Iooss G, Adelmeyer M (1992) Topics in bifurcation theory. World Scientific, Singapore

    MATH  Google Scholar 

  19. Kuznetsov Yu A (2004) Elements of applied bifurcation theory, 3rd edn. Springer, New York

    MATH  Google Scholar 

  20. Krupa M (1997) Robust heteroclinic cycles. J Nonlinear Sci 7:129–176

    MathSciNet  MATH  Google Scholar 

  21. Len JL, Rand RH (1988) Lie transforms applied to a non-linear parametric excitation problem. Int J Non-linear Mech 23:297–313

    MathSciNet  MATH  Google Scholar 

  22. Levy DM, Keller JB (1963) Instability intervals of Hill's equation. Comm Pure Appl Math 16:469–476

    MathSciNet  MATH  Google Scholar 

  23. Magnus W, Winkler S (1966) Hill's equation. Interscience-John Wiley, New York

    MATH  Google Scholar 

  24. McLaughlin JB (1981) Period-doubling bifurcations and chaotic motion for a parametrically forced pendulum. J Stat Phys 24:375–388

    MathSciNet  ADS  Google Scholar 

  25. Ng L, Rand RH (2002) Bifurcations in a Mathieu equation with cubic nonlinearities. Chaos Solitons Fractals 14:173–181

    MathSciNet  ADS  MATH  Google Scholar 

  26. Ng L, Rand RH (2003) Nonlinear effects on coexistence phenomenon in parametric excitation. Nonlinear Dyn 31:73–89

    MathSciNet  MATH  Google Scholar 

  27. Pikovsky AS, Feudel U (1995) Characterizing strange nonchaotic attractors. Chaos 5:253–260

    MathSciNet  ADS  MATH  Google Scholar 

  28. Ramani DV, Keith WL, Rand RH (2004) Perturbation solution for secondary bifurcation in the quadratically-damped Mathieu equation. Int J Non-linear Mech 39:491–502

    MathSciNet  MATH  Google Scholar 

  29. Recktenwald G, Rand RH (2005) Coexistence phenomenon in autoparametric excitation of two degree of freedom systems. Int J Non-linear Mech 40:1160–1170

    MathSciNet  MATH  Google Scholar 

  30. Roseau M (1966) Vibrations nonlinéaires et théorie de la stabilité. Springer, Berlin

    Google Scholar 

  31. Ruijgrok M (1995) Studies in parametric and autoparametric resonance. Thesis, Utrecht University, Utrecht

    Google Scholar 

  32. Ruijgrok M, Verhulst F (1996) Parametric and autoparametric resonance. Prog Nonlinear Differ Equ Their Appl 19:279–298

    MathSciNet  Google Scholar 

  33. Ruijgrok M, Tondl A, Verhulst F (1993) Resonance in a rigid rotor with elastic support. ZAMM 73:255–263

    MathSciNet  ADS  MATH  Google Scholar 

  34. Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, rev edn. Appl Math Sci, vol 59. Springer, New York

    Google Scholar 

  35. Seyranian AP (2001) Resonance domains for the Hill equation with allowance for damping. Phys Dokl 46:41–44

    ADS  Google Scholar 

  36. Seyranian AP, Mailybaev AA (2003) Multiparameter stability theory with mechanical applications. Series A, vol 13. World Scientific, Singapore

    Google Scholar 

  37. Seyranian AA, Seyranian AP (2006) The stability of an inverted pendulum with a vibrating suspension point. J Appl Math Mech 70:754–761

    MathSciNet  Google Scholar 

  38. Stoker JJ (1950) Nonlinear vibrations in mechanical and electrical systems. Interscience, New York, 1950; Wiley, New York, 1992

    Google Scholar 

  39. Strutt MJO (1932) Lamé-sche, Mathieu-sche und verwandte Funktionen. Springer, Berlin

    Google Scholar 

  40. Szemplinska-Stupnicka W (1990) The behaviour of nonlinear vibrating systems, vol 2. Kluwer, Dordrecht

    Google Scholar 

  41. Tondl A (1991) Quenching of self-excited vibrations. Elsevier, Amsterdam

    Google Scholar 

  42. Tondl A, Ruijgrok M, Verhulst F, Nabergoj R (2000) Autoparametric resonance in mechanical systems. Cambridge University Press, New York

    MATH  Google Scholar 

  43. Van der Pol B, Strutt MJO (1928) On the stability of the solutions of Mathieu's equation. Phil Mag Lond Edinb Dublin 7(5):18–38

    Google Scholar 

  44. Verhulst F (1996) Nonlinear differential equations and dynamical systems. Springer, New York

    MATH  Google Scholar 

  45. Verhulst F (2005) Invariant manifolds in dissipative dynamical systems. Acta Appl Math 87:229–244

    MathSciNet  MATH  Google Scholar 

  46. Verhulst F (2005) Methods and applications of singular perturbations. Springer, New York

    MATH  Google Scholar 

  47. Wiggins S (1988) Global Bifurcation and Chaos. Appl Math Sci, vol 73. Springer, New York

    Google Scholar 

  48. Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients, vols 1 and 2. Wiley, New York

    Google Scholar 

  49. Zounes RS, Rand RH (1998) Transition curves for the quasi-periodic Mathieu equation. SIAM J Appl Math 58:1094–1115

    MathSciNet  MATH  Google Scholar 

  50. Zounes RS, Rand RH (2002) Global behavior of a nonlinear quasi-periodic Mathieu equation. Nonlinear Dyn 27:87–105

    MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Arnold VI (1977) Loss of stability of self-oscillation close to resonance and versal deformation of equivariant vector fields. Funct Anal Appl 11:85–92

    Google Scholar 

  2. Arscott FM (1964) Periodic differential equations. MacMillan, New York

    MATH  Google Scholar 

  3. Cartmell M (1990) Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall, London

    MATH  Google Scholar 

  4. Dohnal F (2005) Damping of mechanical vibrations by parametric excitation. Ph?D thesis, Vienna University of Technology

    Google Scholar 

  5. Dohnal F, Verhulst F (2008) Averaging in vibration suppression by parametric stiffness excitation. Nonlinear Dyn (accepted for publication)

    Google Scholar 

  6. Ecker H (2005) Suppression of self-excited vibrations in mechanical systems by parametric stiffness excitation. Fortschrittsberichte Simulation Bd 11. Argesim/Asim Verlag, Vienna

    Google Scholar 

  7. Fatimah S (2002) Bifurcations in dynamical systems with parametric excitation. Thesis, University of Utrecht

    Google Scholar 

  8. Hale J (1969) Ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  9. Kirillov ON (2007) Gyroscopic stabilization in the presence of nonconservative forces. Dokl Math 76:780–785; Orig Russian: (2007) Dokl Ak Nauk 416:451–456

    Google Scholar 

  10. Meixner J, Schäfke FW (1954) Mathieusche Funktionen und Sphäroidfunktionen. Springer, Berlin

    Google Scholar 

  11. Moon FC (1987) Chaotic vibrations: an introduction for applied scientists and engineers. Wiley, New York

    MATH  Google Scholar 

  12. Nayfeh AH, Mook DT (1979) Nonlinear Oscillations. Wiley Interscience, New York

    MATH  Google Scholar 

  13. Schmidt G (1975) Parametererregte Schwingungen. VEB Deutscher Verlag der Wissenschaften, Berlin

    MATH  Google Scholar 

  14. Schmidt G, Tondl A (1986) Non-linear vibrations. Akademie-Verlag, Berlin

    Google Scholar 

  15. Tondl A (1978) On the interaction between self-excited and parametric vibrations. In: Monographs and Memoranda, vol 25. National Res Inst Bechovice, Prague

    Google Scholar 

  16. Tondl A (1991) On the stability of a rotor system. Acta Technica CSAV 36:331–338

    MATH  Google Scholar 

  17. Tondl A (2003) Combination resonances and anti-resonances in systems parametrically excited by harmonic variation of linear damping coefficients. Acta Technica CSAV 48:239–248

    Google Scholar 

  18. Van der Burgh AHP, Hartono (2004) Rain-wind induced vibrations of a simple oscillator. Int J Non-Linear Mech 39:93–100

    MATH  Google Scholar 

  19. Van der Burgh AHP, Hartono, Abramian AK (2006) A new model for the study of rain-wind-induced vibrations of a simple oscillator. Int J Non-Linear Mech 41:345–358

    MATH  Google Scholar 

  20. Weinstein A, Keller JB (1985) Hill's equation with a large potential. SIAM J Appl Math 45:200–214

    MathSciNet  MATH  Google Scholar 

  21. Weinstein A, Keller JB (1987) Asymptotic behaviour of stability regions for Hill's equation. SIAM J Appl Math 47:941–958

    MathSciNet  MATH  Google Scholar 

  22. Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgment

A number of improvements and clarifications were suggested by the editor, Giuseppe Gaeta. Additional references were obtained from Henk Broerand Fadi Dohnal.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Verhulst, F. (2009). Perturbation Analysis of Parametric Resonance. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_393

Download citation

Publish with us

Policies and ethics