Skip to main content
  • 178 Accesses

Definition of the Subject

Perturbation Theory: Computation of a quantity depending on a parameter ε starting from theknowledge of its value for \( { \varepsilon=0 }\) by deriving a power series expansion in ε, under the assumption of its existence, and if possiblediscussing the interpretation of the series. Perturbation theory is very often the only way to get a glimpse of the properties of systems whoseequations cannot be “explicitly solved” in computable form.

The importance of Perturbation Theory is witnessed by its applications in Astronomy , where it led not only to the discovery of new planets (Neptune)but also to the discovery of Chaotic motions , with the completion of the Copernican revolution and the full understanding of the role of AristotelianPhysics formalized into uniform rotations of deferents and epicycles (today Fourier representation of quasi periodic motions )....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The scaling factor 2 is arbitrary: any scale factor\( { > 1 } \) could beused.

Abbreviations

Formal power series:

a power series, giving the value of a function \( { f(\varepsilon) } \) of a parameter ε, that is derived assuming that f is analytic in ε.

Renormalization group:

method for multiscale analysis and resummation of formal power series. Usually applied to define a systematic collection of terms to organize a formal power series into a convergent one.

Lindstedt series:

an algorithm to develop formal power series for computing the parametric equations of invariant tori in systems close to integrable.

Multiscale problem:

any problem in which an infinite number of scales play a role.

Bibliography

  1. Einstein A (1917) Zum Quantensatz von Sommerfeld und Epstein. Verh Dtsch Phys Ges 19:82–102

    Google Scholar 

  2. Eliasson LH (1996) Absolutely convergent series expansions for quasi‐periodic motions. Math Phys Electron J (MPEJ) 2:33

    MathSciNet  Google Scholar 

  3. Fermi E (1923) Il principio delle adiabatiche e i sistemi che non ammettono coordinate angolari. Nuovo Cimento 25:171–175. Reprinted in Collected papers, vol I, pp 88–91

    Google Scholar 

  4. Frölich J (1982) On the triviality of \( { \lambda \varphi^4_d } \) theories and the approach to the critical point in \( { d\,(\ge 4) } \) dimensions. Nucl Phys B 200:281–296

    Google Scholar 

  5. Gallavotti G (1985) Perturbation Theory for Classical Hamiltonian Systems. In: Fröhlich J (ed) Scaling and self similarity in Physics. Birkhauser, Boston

    Google Scholar 

  6. Gallavotti G (1985) Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev Mod Phys 57:471–562

    MathSciNet  ADS  Google Scholar 

  7. Gallavotti G (1986) Quasi integrable mechanical systems. In: Phenomènes Critiques, Systèmes aleatories, Théories de jauge (Proceedings, Les Houches, XLIII (1984) vol II, pp 539–624) North Holland, Amsterdam

    Google Scholar 

  8. Gallavotti G (1994) Twistless KAM tori. Commun Math Phys 164:145–156

    MathSciNet  ADS  MATH  Google Scholar 

  9. Gallavotti G (1995) Invariant tori: a field theoretic point of view on Eliasson's work. In: Figari R (ed) Advances in Dynamical Systems and Quantum Physics. World Scientific, pp 117–132

    Google Scholar 

  10. Gallavotti G (2001) Renormalization group in Statistical Mechanics and Mechanics: gauge symmetries and vanishing beta functions. Phys Rep 352:251–272

    MathSciNet  ADS  MATH  Google Scholar 

  11. Gallavotti G, Benfatto G (1995) Renormalization group. Princeton University Press, Princeton

    MATH  Google Scholar 

  12. Gallavotti G, Bonetto F, Gentile G (2004) Aspects of the ergodic, qualitative and statistical theory of motion. Springer, Berlin

    MATH  Google Scholar 

  13. Gallavotti G, Gentile G (2005) Degenerate elliptic resonances. Commun Math Phys 257:319–362. doi:10.1007/s00220-005-1325-6

    MathSciNet  ADS  MATH  Google Scholar 

  14. Glimm J, Jaffe A (1981) Quantum Physics. A functional integral point of view. Springer, New York

    MATH  Google Scholar 

  15. Gross DJ (1999) Twenty Five Years of Asymptotic Freedom. Nucl Phys B (Proceedings Supplements) 74:426–446. doi:10.1016/S0920-5632(99)00208-X

    Google Scholar 

  16. Hepp K (1966) Proof of the Bogoliubov–Parasiuk theorem on renormalization. Commun Math Phys 2:301–326

    ADS  MATH  Google Scholar 

  17. Hepp K (1969) Théorie de la rénormalization. Lecture notes in Physics, vol 2. Springer, Berlin

    Google Scholar 

  18. Kolmogorov AN (1954) On the preservation of conditionally periodic motions. Dokl Akad Nauk SSSR 96:527–530 and in: Casati G, Ford J (eds) (1979) Stochastic behavior in classical and quantum Hamiltonians. Lecture Notes in Physics vol 93. Springer, Berlin

    MathSciNet  Google Scholar 

  19. Laplace PS (1799) Mécanique Céleste. Paris. Reprinted by Chelsea, New York

    Google Scholar 

  20. Levi-Civita T (1956) Opere Matematiche, vol 2. Accademia Nazionale dei Lincei and Zanichelli, Bologna

    MATH  Google Scholar 

  21. Morrey CB (1955) On the derivation of the equations of hydrodynamics from Statistical Mechanics. Commun Pure Appl Math 8:279–326

    MathSciNet  MATH  Google Scholar 

  22. Nelson E (1966) A quartic interaction in two dimensions. In: Goodman R, Segal I (eds) Mathematical Theory of elementary particles. MIT, Cambridge, pp 69–73

    Google Scholar 

  23. Poincaré H (1892) Les Méthodes nouvelles de la Mécanique céleste. Paris. Reprinted by Blanchard, Paris, 1987

    Google Scholar 

  24. Pöschel J (1986) Invariant manifolds of complex analytic mappings. In: Osterwalder K, Stora R (eds) Phenomènes Critiques, Systèmes aleatories, Théories de jauge (Proceedings, Les Houches, XLIII (1984); vol II, pp 949–964) North Holland, Amsterdam

    Google Scholar 

  25. Siegel K (1943) Iterations of analytic functions. Ann Math 43:607–612

    Google Scholar 

  26. Simon B (1974) The \( { P(\varphi)_2 } \) Euclidean (quantum) field theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  27. 't Hooft G (1999) When was asymptotic freedom discovered? or The rehabilitation of quantum field theory. Nucl Phys B (Proceedings Supplements) 74:413–425. doi:10.1016/S0920-5632(99)00207-8

    Google Scholar 

  28. 't Hooft G, Veltman MJG (1972) Regularization and renormalization of gauge fields, Nucl Phys B 44:189–213

    ADS  Google Scholar 

  29. Wilson K, Kogut J (1973) The renormalization group and the ε-expansion. Phys Rep 12:75–199

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Gallavotti, G. (2009). Perturbation Theory. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_396

Download citation

Publish with us

Policies and ethics