Skip to main content

Perturbation Theory in Celestial Mechanics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 211 Accesses

Definition of the Subject

Perturbation theory aims to find an approximate solution of nearly-integrable systems, namely systems which are composed by an integrable partand by a small perturbation. The key point of perturbation theory is the construction of a suitable canonical transformation which removes theperturbation to higher orders. A typical example of a nearly-integrable system is provided by a two-body model perturbed by thegravitational influence of a third body whose mass is much smaller than the mass of the central body. Indeed, the solution of the three-bodyproblem greatly stimulated the development of perturbation theories. The solar system dynamics has always been a testing ground for such theories,whose applications range from the computation of the ephemerides of natural bodies to the development of the trajectories of artificial satellites.

Introduction

The two-body problem can be solved by means of Kepler's laws, according to which for negative energies the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

KAM theory:

Provides the persistence of quasi-periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i.?e. a non-degeneracy of the integrable system and a diophantine condition of the frequency of motion. It yields a constructive algorithm to evaluate the strength of the perturbation ensuring the existence of invariant tori.

Perturbation theory:

Provides an approximate solution of the equations of motion of a nearly-integrable system.

Spin-orbit problem:

A model composed of a rigid satellite rotating about an internal axis and orbiting around a central point-mass planet; a spin-orbit resonance means that the ratio between the revolutional and rotational periods is rational.

Three-body problem:

A system composed by three celestial bodies (e.?g. Sun-planet-satellite) assumed to be point-masses subject to the mutual gravitational attraction. The restricted three-body problem assumes that the mass of one of the bodies is so small that it can be neglected.

Bibliography

  1. Andoyer H (1926) Mécanique Céleste. Gauthier-Villars,Paris

    MATH  Google Scholar 

  2. Arnold VI (1963) Small denominators and problems of stability of motion inclassical and celestial mechanics. Uspehi Mat Nauk 6 18(114):91–192

    Google Scholar 

  3. Arnold VI (1978) Mathematical methods of classical mechanics. Springer,Berlin

    MATH  Google Scholar 

  4. Arnold VI (ed) (1988) Encyclopedia of Mathematical Sciences. Dynamical SystemsIII. Springer, Berlin

    Google Scholar 

  5. Benettin G, Fasso F, Guzzo M (1998) Nekhoroshev-stabilityof L 4 and L 5 in the spatialrestricted three-body problem. Regul Chaotic Dyn 3(3):56–71

    MathSciNet  MATH  Google Scholar 

  6. Boccaletti D, Pucacco G (2001) Theory of orbits. Springer,Berlin

    Google Scholar 

  7. Brouwer D, Clemence G (1961) Methods of Celestial Mechanics. Academic Press, NewYork

    Google Scholar 

  8. Celletti A (1990) Analysis of resonances in the spin-orbit problem. In:Celestial Mechanics: The synchronous resonance (Part I). J Appl Math Phys (ZAMP) 41:174–204

    MathSciNet  MATH  Google Scholar 

  9. Celletti A (1993) Construction of librational invariant tori in the spin-orbitproblem. J Appl Math Phys (ZAMP) 45:61–80

    MathSciNet  Google Scholar 

  10. Celletti A, Chierchia L (1998) Construction of stable periodic orbits for thespin-orbit problem of Celestial Mechanics. Regul Chaotic Dyn (Editorial URSS) 3:107–121

    MathSciNet  MATH  Google Scholar 

  11. Celletti A, Chierchia L (2006) KAM tori for N-body problems: a briefhistory. Celest Mech Dyn Astron 95 1:117–139

    MathSciNet  ADS  MATH  Google Scholar 

  12. Celletti A, Chierchia L (2007) KAM Stability and Celestial Mechanics. Mem AmMath Soc 187:878

    MathSciNet  Google Scholar 

  13. Celletti A, Giorgilli A (1991) On the stability of the Lagrangian points inthe spatial restricted problem of three bodies. Celest Mech Dyn Astron 50:31–58

    MathSciNet  ADS  MATH  Google Scholar 

  14. Chebotarev AG (1967) Analytical and Numerical Methods of CelestialMechanics. Elsevier, New York

    MATH  Google Scholar 

  15. Chierchia L, Gallavotti G (1994) Drift and diffusion in phase space. Annl'Inst H Poincaré 60:1–144

    Google Scholar 

  16. Delaunay C (1867) Mémoire sur la théorie de la Lune. Mém l'Acad Sci 28:29(1860)

    Google Scholar 

  17. Deprit A (1967) Free rotation of a rigid body studied in the phasespace. Am J Phys 35:424–428

    ADS  Google Scholar 

  18. Efthymiopoulos C, Sandor Z (2005) Optimized Nekhoroshev stability estimatesfor the Trojan asteroids with a symplectic mapping model of co-orbital motion. MNRAS 364(6):253–271

    ADS  Google Scholar 

  19. Féjoz J (2004) Démonstration du “théorème d'Arnold” sur la stabilité dusystème planétaire (d'après Michael Herman). Ergod Th Dynam Syst 24:1–62

    Google Scholar 

  20. Ferraz-Mello S (2007) Canonical Perturbation Theories. Springer,Berlin

    MATH  Google Scholar 

  21. Gabern F, Jorba A, Locatelli U (2005) On the construction of the Kolmogorovnormal form for the Trojan asteroids. Nonlinearity 18:1705–1734

    MathSciNet  ADS  MATH  Google Scholar 

  22. Giorgilli A, Skokos C (1997) On the stability of the trojan asteroids. AstronAstroph 317:254–261

    ADS  Google Scholar 

  23. Giorgilli A, Delshams A, Fontich E, Galgani L, Simó C (1989) Effectivestability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem. J Diff Eq77:167–198

    Google Scholar 

  24. Hagihara Y (1970) Celestial Mechanics. MIT Press,Cambridge

    MATH  Google Scholar 

  25. Hénon M (1966) Explorationes numérique du problème restreint IV: Massesegales, orbites non periodique. Bull Astron 3(1, fasc 2):49–66

    Google Scholar 

  26. Kolmogorov AN (1954) On the conservation of conditionally periodic motionsunder small perturbation of the Hamiltonian. Dokl Akad Nauk SSR 98:527–530

    MathSciNet  MATH  Google Scholar 

  27. Laskar J, Robutel P (1995) Stability of the planetary three-body problem IExpansion of the planetary Hamiltonian. Celest Mech and Dyn Astron 62(3):193–217

    MathSciNet  ADS  MATH  Google Scholar 

  28. Lhotka Ch, Efthymiopoulos C, Dvorak R (2008) Nekhoroshev stabilityat L 4 or L 5 in the ellipticrestricted three body problem-application to Trojanasteroids. MNRAS 384:1165–1177

    ADS  Google Scholar 

  29. Locatelli U, Giorgilli A (2000) Invariant tori in the secular motions of thethree-body planetary systems. Celest Mech and Dyn Astron 78:47–74

    MathSciNet  ADS  MATH  Google Scholar 

  30. Locatelli U, Giorgilli A (2005) Construction of the Kolmogorov's normal formfor a planetary system. Regul Chaotic Dyn 10:153–171

    MathSciNet  ADS  MATH  Google Scholar 

  31. Locatelli U, Giorgilli A (2007) Invariant tori in theSun–Jupiter–Saturn system. Discret Contin Dyn Syst-Ser B 7:377–398

    MathSciNet  MATH  Google Scholar 

  32. Meyer KR, Hall GR (1991) Introduction to Hamiltonian dynamical systems and theN-body problem. Springer, Berlin

    Google Scholar 

  33. Moser J (1962) On invariant curves of area-preserving mappings of anannulus. Nach Akad Wiss Göttingen. Math Phys Kl II 1:1

    Google Scholar 

  34. Poincarè H (1892) Les Méthodes Nouvelles de la MécaniqueCéleste. Gauthier-Villars, Paris

    Google Scholar 

  35. Robutel P (1995) Stability of the planetary three-body problem II KAM theoryand existence of quasi-periodic motions. Celest Mech Dyn Astron 62(3):219–261

    MathSciNet  ADS  MATH  Google Scholar 

  36. Robutel P, Gabern F (2006) The resonant structure of Jupiter's Trojanasteroids – I Long-term stability and diffusion. MNRAS 372(4):1463–1482

    ADS  Google Scholar 

  37. Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamicalsystems. Springer, Berlin

    MATH  Google Scholar 

  38. Siegel CL, Moser JK (1971) Lectures on Celestial Mechanics. Springer,Heidelberg

    MATH  Google Scholar 

  39. Szebehely V (1967) Theory of orbits. Academic Press, NewYork

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Celletti, A. (2009). Perturbation Theory in Celestial Mechanics . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_397

Download citation

Publish with us

Policies and ethics