Skip to main content

Definition of the Subject

As it is now widely recognized, classical dynamical chaos has been one of the major scientific breakthroughs of the past century. Quantum chaos ,sometimes called Quantum chaology, studies the manifestations of chaotic motion and related dynamical phenomena in quantum mechanics [1,2].

More abstractly, one may define as quantum chaos those phenomena of simple quantum systems which can be describedstatistically and exhibit some universal (i. e. system independent) features. By the term simple we mean herethat the system can be specified by a finite set of parameters or, generally, can be described by a finite amount of information. So we canfundamentally distinguish the phenomena of quantum chaos from similar dynamical phenomena in disordered systems –specified in terms of random parameters and which therefore contain infinite amount of information in an appropriate (say thermodynamic) limit.

The universal statistical properties of quantum chaotic systems which...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ergodicity :

The property of a dynamical system, according to which a single trajectory, starting from almost any initial condition, explores (densely covers) the entire available phase space of physical states.

Integrability :

A classical Hamiltonian dynamical system of N degrees of freedom is said to be integrable (according to Liouville) if there exist N independent conserved quantities. Integrability implies explicit quasi-periodic solution of the equations of motion.

Random matrix theory :

The statistical theory which allows to describe the fluctuation properties of quantum systems in terms of the sets (ensembles) of random Hermitian matrices with appropriate invariant measures.

Wigner surmise :

Nearest neighbor energy level spacing distribution based on the simplest \( { 2\times 2 } \) Gaussian Hermitian random matrix models, accurately approximating spacing distributions in complex quantum systems.

Periodic orbit theory or trace formula :

A relationship between certain properties of energy spectrum of a quantized chaotic system, and the set of unstable periodic orbits of the corresponding classical chaotic system.

Quantum Loschmidt echo or fidelity :

A measure of stability of quantum time evolution. It is computed as a Hilbert space inner product of two slightly different quantum time evolutions starting from the same initial state.

Bibliography

  1. Haake F (2001) Quantum Signatures of Chaos, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  2. Stöckmann HJ (1999) Quantum Chaos: An Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  3. Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic theory. Springer, New York

    MATH  Google Scholar 

  4. Casati G, Prosen T (1999) Phys Rev Lett 83:4279; Casati G, Prosen T (2000) Phys Rev Lett 85:4261

    Google Scholar 

  5. Mehta ML (1991) Random matrices. Academic Press, New York

    MATH  Google Scholar 

  6. Casati G, Guarneri I, Valz-Gris (1980) Lett Nuovo Cimento 28:279

    MathSciNet  Google Scholar 

  7. Bohigas O, Giannoni MJ, Schmit C (1984) Phys Rev Lett 52:1

    MathSciNet  ADS  MATH  Google Scholar 

  8. Robnik M (1983) J Phys A 16:3971

    MathSciNet  ADS  MATH  Google Scholar 

  9. Bäcker A (2007) Comput Sci Eng 9:60

    Google Scholar 

  10. Berry MV (1977) J Phys A 10:2083

    MathSciNet  ADS  MATH  Google Scholar 

  11. Feingold M, Peres A (1986) Phys Rev A 34:591

    MathSciNet  ADS  Google Scholar 

  12. Horvat M, Prosen T (2003) J Phys A 36:4015

    MathSciNet  ADS  MATH  Google Scholar 

  13. Heller EJ (1984) Phys Rev Lett 53:1515

    MathSciNet  ADS  Google Scholar 

  14. Shnirelman AI (1974) Usp Math Nauk 29:181

    Google Scholar 

  15. Zelditch S (1987) Duke Math J 55:919

    MathSciNet  MATH  Google Scholar 

  16. Colin de Verdiere Y (1985) Comm Math Phys 102:111

    MathSciNet  Google Scholar 

  17. Berry MV, Tabor M (1977) Proc R Soc A 356:375

    ADS  MATH  Google Scholar 

  18. Casati G, Chirikov BV (1985) Phys Rev Lett 54:1350

    MathSciNet  ADS  Google Scholar 

  19. Berry MV, Robnik M (1984) J Phys A 17:2413

    MathSciNet  ADS  MATH  Google Scholar 

  20. Gutzwiller MC (1991) Chaos in Classical and Quantum Mechanics. Springer, New York

    Google Scholar 

  21. Berry MV, Tabor M (1977) J Phys A 10:371

    ADS  Google Scholar 

  22. Bogomolny EB (1988) Physica D 31:169

    MathSciNet  ADS  MATH  Google Scholar 

  23. Berry MV (1989) Proc Royal Soc A 423:219

    ADS  Google Scholar 

  24. Müller S, Heusler S, Braun P, Haake F, Altland A (2004) Phys Rev Lett 93:014 103; Müller S, Heusler S, Braun P, Haake F, Altland A (2005) Phys Rev E 72:046 207

    Google Scholar 

  25. Sieber M (2002) J Phys A 35:L613

    MathSciNet  ADS  MATH  Google Scholar 

  26. Heller EJ (1991) Chaos and Quantum Physics. In: Giannoni MJ, Voros A, Zinn-Justin J (eds) Les Houches, Session LII, 1989. North Holland, Amsterdam, p 547

    Google Scholar 

  27. Casati G, Prosen T (2005) Phys Rev A 72:032111

    MathSciNet  ADS  Google Scholar 

  28. Gorin T, Prosen T, Seligman TH, Žnidarič M (2006) Phys Rep 435:33

    Google Scholar 

  29. Peres A (1984) Phys Rev A 30:1610

    MathSciNet  ADS  Google Scholar 

  30. Casati G, Chirikov BV (1995) In: Quantum chaos: between order and disorder. Cambridge University Press, Cambridge, p 3

    Google Scholar 

  31. Casati G, Chirikov BV, Izrailev FM, Ford J (1979) In: Casati FG, Ford J (eds) Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, vol 93. Springer, Berlin

    Google Scholar 

  32. Fishman S, Grempel DR, Prange RE (1982) Phys Rev Lett 49:509

    MathSciNet  ADS  Google Scholar 

  33. Bayfield JE, Koch PM (1974) Phys Rev Lett 33:258

    ADS  Google Scholar 

  34. Casati G, Chirikov BV, Shepelyanski D (1984) Phys Rev Lett 53:2525

    ADS  Google Scholar 

  35. Bayfield JE, Casati G, Guarneri I, Sokol DW (1989) Phys Rev Lett 63:364

    ADS  Google Scholar 

  36. Galvez EJ, Sauer BE, Moorman L, Koch PM, Richards D (1988) Phys Rev Lett 61:2011

    ADS  Google Scholar 

  37. Klappauf BG, Oskay WH, Steck DA, Raizen MG (1999) Physica D 131:78

    ADS  Google Scholar 

  38. Marcus CM, Rimberg AJ, Westervelt RM, Hopkins PF, Gossard AC (1992) Phys Rev Lett 69:506

    ADS  Google Scholar 

  39. Beenakker CWJ (1997) Rev Mod Phys 69:731

    ADS  Google Scholar 

  40. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  41. Benenti G, Casati G, Strini G (2004) Principles of Quantum Computation and Information, vol I: Basic concepts. World Scientific, Singapore; Benenti G, Casati G, Strini G (2007) Principles of Quantum Computation and Information, vol II: Basic tools and special topics. World Scientific, Singapore

    Google Scholar 

  42. Žnidarič M, Prosen T (2003) J Phys A: Math Gen 36:2463

    Google Scholar 

  43. Weinstein YA, Lloyd S, Emerson J, Cory DG (2002) Phys Rev Lett 89:157 902; Henry MK, Emerson J, Martinez R, Cory DG (2006) Phys Rev A 74:032 617

    Google Scholar 

  44. Stein J, Stöckmann HJ (1992) Phys Rev Lett 68:2867

    Google Scholar 

  45. Richter A (2001) Phys Scr T90:212

    ADS  Google Scholar 

  46. Sridhar S (1991) Phys Rev Lett 67:785

    ADS  Google Scholar 

  47. Ellegaard C, Schaadt K, Bertelsen P (2001) Phys Scr T90:223

    ADS  Google Scholar 

  48. Kuhl U, Stöckmann HJ, Weaver R (2005) J Phys A 38:10 433

    Google Scholar 

  49. Fyodorov YV, Savin DV, Sommers HJ (2005) J Phys A 38:10 731

    MathSciNet  Google Scholar 

  50. Doya V, Legrand O, Mortessagne F, Miniatura C (2001) Phys Rev Lett 88:014 102

    Google Scholar 

  51. Harayama T, Fukushima T, Sunada S, Ikeda KS (2003) Phys Rev Lett 91:073 903

    Google Scholar 

  52. Prosen T (2007) J Phys A: Math Theor 40:7881

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Casati, G., Prosen, T. (2009). Quantum Chaos. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_427

Download citation

Publish with us

Policies and ethics