Skip to main content

Definition of the Subject

Quantum computing is computing that follows the logic of quantummechanics. The first part of this subject is well‐specified after the hundred‐odd years of developmentof quantum theory. Definitions of computing are fuzzier, and argued over by philosophers: for the purposes of thisarticle we will leave such nuances aside in favor of exploring what is possible when the constraints of classicallogic are put aside, but the limitations of the physical world are kept firmly in hand.

Quantum computing is not simply computing that involves quantum effects, that would be too broad to beuseful. Since transitors and lasers exploit quantum properties of matter and light, most classical computers wouldthus be included. Yet it is worth remembering that definitions are never as clearcut as we would like. Figuringout which quantum systems can be simulated efficiently by classical computers is an active area of currentresearch, and pinning down the boundary between quantum and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bit:

A  two state classical system used to represent a binary digit, zero or one.

Bose–Einstein particles:

Integer spin quantum particles like to be together: any number can occupy the same quantum state.

Classical computing:

What we can compute within the laws of classical physics.

Error correction:

In a quantum context, fixing errors without disturbing the quantum superposition.

Entanglement:

Quantum states can be more highly correlated than classical systems: the extra correlations are known as entanglement.

Fermi–Dirac particles:

Half‐integer spin quantum particles like to be alone: only one such particle can occupy each quantum state.

Quantum communications:

Using quantum mechanics can gain an advantage when transmitting information.

Quantum dense coding:

Classical bits can be encoded two for one into qubits for communications purposes.

Quantum key distribution:

Quantum mechanics allows for secure key distribution in the presence of eavesdroppers and noisy environments. The keys can then be used for encrypted communication.

Quantum teleportation:

A method to transmit an unknown quantum state using only classical communications plus shared entanglement.

Quantum computing:

Computation based on the laws of quantum mechanics for the allowed logical operations.

Qubit:

A two state quantum system such as the spin of an electron or the polarization of a photon. More complex quantum particles (such as atoms) can be used as qubits if just two of their available states are chosen to represent the qubit.

Qubus:

A quantum version of a computer bus, the fast communications linking memory and processing registers. Can be implemented using a coherent light source (such as a laser).

Scalable:

A computer architecture designed from modular units that can be efficiently expanded to an arbitrary size.

Squeezing:

With a pair of complementary quantum observables, making one uncertain so that the other can be measured more precisely.

Threshold result:

In the context of quantum computation, this results says that error correction can work if the error rate is low enough.

Tunneling:

Quantum particles can get through barriers that classical particles remain stuck behind. If the barrier is not infinitely high, there is a some probability for the quantum particle to be the other side of it even though it doesn't on average have enough energy to jump over the top.

Unitary operations:

How to control quantum systems while preserving quantum properties. Quantum systems evolving without any influence from environmental disturbance follow unitary dynamical evolution.

Bibliography

Primary Literature

  1. Bartlett SD, Rudolph T, Spekkens RW (2006) Reference frames, superselection rules, and quantum information. Rev Mod Phys 79:555; ArXiv:quant-ph/0610030

    MathSciNet  ADS  Google Scholar 

  2. Dawson CM, Nielsen MA (2006) The Solovay-Kitaev algorithm. Quantum Inf Comp 6:81–95; The Solovay-Kitaev theorem dates from 1995, but was only partially published in pieces – this Ref. gives a more comprehensive review; ArXiv:quant-ph/0505030

    MathSciNet  MATH  Google Scholar 

  3. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467

    MathSciNet  Google Scholar 

  4. Deutsch D (1985) Quantum-theory, the church-turing principle and the universal quantum computer. Proc R Soc Lond A 400(1818):97–117

    MathSciNet  ADS  MATH  Google Scholar 

  5. Knill E, Laflamme R, Zurek W (1996) Threshold accuracy for quantum computation. ArXiv:quant-ph/9610011

    Google Scholar 

  6. Aharonov D, Ben-Or M (1996) Fault tolerant quantum computation with constant error. In: Proc 29 th ACM STOC. ACM, NY 176–188; ArXiv:quant-ph/9611025

    Google Scholar 

  7. Steane A (1996) Multiple particle interference and quantum error correction. Proc Roy Soc Lond A 452:2551; ArXiv:quant-ph/9601029

    MathSciNet  ADS  Google Scholar 

  8. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Sci Statist Comput 26:1484

    MathSciNet  MATH  Google Scholar 

  9. Bennett CH, Brassard G (1984) Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing. IEEE Computer Society Press, Los Alamitos, pp 175–179

    Google Scholar 

  10. Bennett CH, Wiesner SJ (1992) Communication via one – and two-particle operators on Einstein–Podolsky–Rosen states. Phys Rev Lett 69(20):2881–2884

    MathSciNet  ADS  MATH  Google Scholar 

  11. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett 70:1895–1899

    Google Scholar 

  12. Graham-Rowe D (2007) Quantum ATM rules out fraudulent web purchases. New Sci 2629:30–31

    Google Scholar 

  13. Duligall JL, Godfrey MS, Harrison KA, Munro WJ, Rarity JG (2006) Low cost and compact quantum cryptography. New J Phys 8:249; ArXiv:quant-ph/0608213v2

    Google Scholar 

  14. Steane A (2001) Quantum computing and error correction. In: Gonis, Turchi (eds) Decoherence and its implications in quantum computation and information transfer. IOS Press, Amsterdam, pp 284–298

    Google Scholar 

  15. Lidar DA, Chuang IL, Whaley KB (1998) Decoherence free subspaces for quantum computation. Phys Rev Lett 81:2594–2598; ArXiv:quant-ph/9807004v2

    ADS  Google Scholar 

  16. Lidar DA, Whaley KB (2003) Decoherence-free subspaces and subsystems. In: Benatti F, Floreanini R (eds) Irreversible Quantum Dynamics. Lecture Notes in Physics, vol 622. Springer, Berlin, pp 83–120; ArXiv:quant-ph/0301032

    Google Scholar 

  17. Misra B, Sudarshan ECG (1977) The Zeno's paradox in quantum theory. J Math Phys 18:756

    MathSciNet  ADS  Google Scholar 

  18. Beige A, Braun D, Tregenna B, Knight PL (2000) Quantum computing using dissipation to remain in a decoherence-free subspace. Phys Rev Lett 85:762–1766; ArXiv:quant-ph/0004043v3

    ADS  Google Scholar 

  19. Nielsen M, Chuang I (1996) Talk at KITP Workshop: Quantum Coherence and Decoherence, organized by DiVencenzo DP and Zurek W. http://www.kitp.ucsb.edu/activities/conferences/past/. Accessed 2 Sep 2008

  20. Lomont C (2004) The hidden subgroup problem-review and open problems. ArXiv:quant-ph/0411037

    Google Scholar 

  21. Childs A, Eisenberg JM (2005) Quantum algorithms for subset finding. Quantum Inf Comput 5:593–604; ArXiv:quant-ph/0311038

    MATH  Google Scholar 

  22. Ambainis A (2004) Quantum walk algorithms for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, pp 22–31

    Google Scholar 

  23. Kendon V, Tregenna B (2003) Decoherence can be useful in quantum walks. Phys Rev A 67:042315; ArXiv:quant-ph/0209005

    ADS  Google Scholar 

  24. Richter P (2007) Almost uniform sampling in quantum walks. New J Phys 9:72; ArXiv:quant-ph/0606202

    Google Scholar 

  25. Richter P (2007) Quantum speedup of classical mixing processes. Phys Rev A 76:042306; ArXiv:quant-ph/0609204

    ADS  Google Scholar 

  26. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc 28th Annual ACM STOC. ACM, NY, p 212; ArXiv:quant-ph/9605043

    Google Scholar 

  27. Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325; ArXiv:quant-ph/9706033

    ADS  Google Scholar 

  28. Shenvi N, Kempe J, Whaley BK (2003) A quantum random walk search algorithm. Phys Rev A 67:052307; ArXiv:quant-ph/0210064

    ADS  Google Scholar 

  29. Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths and weaknesses of quantum computing. SIAM J Comput 26(5):151–152

    MathSciNet  Google Scholar 

  30. Magniez F, Santha M, Szegedy M (2003) An \( { o(n^{1.3}) } \) quantum algorithm for the triangle problem. ArXiv:quant-ph/0310134

    Google Scholar 

  31. Magniez F, Santha M, Szegedy M (2005) Quantum algorithms for the triangle problem. In: Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 1109–1117

    Google Scholar 

  32. Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2003) Exponential algorithmic speedup by a quantum walk. In: Proc 35th Annual ACM STOC. ACM, NY, pp 59–68; ArXiv:quant-ph/0209131

    Google Scholar 

  33. Ambainis A (2003) Quantum walks and their algorithmic applications. Int J Quantum Information 1(4):507–518; ArXiv:quant-ph/0403120

    MATH  Google Scholar 

  34. Scott Aaronson (2005) The complexity zoo. http://qwiki.caltech.edu/wiki/Complexity_Zoo. Accessed 2 Sep 2008

  35. De Raedt K, Michielsen K, De Raedt H, Trieu B, Arnold G, Richter M, Lippert Th, Watanabe H, Ito N (2007) Massive parallel quantum computer simulator. Comp Phys Comm 176:127–136

    Google Scholar 

  36. Cirac JI, Verstraete F, Porras D (2004) Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys Rev Lett 93:227205

    ADS  Google Scholar 

  37. Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054; ArXiv:quant-ph/9908043

    Google Scholar 

  38. Margolus N, Levitin LB (1996) The maximum speed of dynamical evolution. In: Toffoli T, Biafore M, Liao J (eds) Physcomp96. NECSI, Boston

    Google Scholar 

  39. Margolus N, Levitin LB (1998) The maximum speed of dynamical evolution. Physica D 120:188–195; ArXiv:quant-ph/9710043v2

    ADS  Google Scholar 

  40. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte der Physik 48(9–11):771–783

    ADS  MATH  Google Scholar 

  41. Metodi TS, Thaker DD, Cross AW, Chong FT, Chuang IL (2005) A quantum logic array microarchitecture: Scalable quantum data movement and computation. In: 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05). IEEE Computer Society Press, Los Alamitos, pp 305–318; ArXiv:quant-ph/0509051v1

    Google Scholar 

  42. Spiller TP, Munro WJ, Barrett SD, Kok P (2005) An introduction to quantum information processing: applications and realisations. Comptemporary Physics 46:407

    ADS  Google Scholar 

  43. Jozsa R (1998) Entanglement and quantum computation. In: Huggett SA, Mason LJ, Tod KP, Tsou S, Woodhouse NMJ (eds) The Geometric Universe, Geometry, and the Work of Roger Penrose. Oxford University Press, Oxford, pp 369–379

    Google Scholar 

  44. Blume-Kohout R, Caves CM, Deutsch IH (2002) Climbing mount scalable: Physical resource requirements for a scalable quantum computer. Found Phys 32(11):1641–1670; ArXiv:quant-ph/0204157

    MathSciNet  Google Scholar 

  45. Greentree AD, Schirmer SG, Green F, Lloyd Hollenberg CL, Hamilton AR, Clark RG (2004) Maximizing the hilbert space for a finite number of distinguishable quantum states. Phys Rev Lett 92:097901; ArXiv:quant-ph/0304050

    ADS  Google Scholar 

  46. Braunstein SL, van Loock P (2005) Quantum information with continuous variables. Rev Mod Phys 77:513–578

    ADS  MATH  Google Scholar 

  47. Lloyd S, Braunstein SL (1999) Quantum computation over continuous variables. Phys Rev Lett 82:1784; ArXiv:quant-ph/9810082v1

    MathSciNet  ADS  Google Scholar 

  48. Bartlett S, Sanders B, Braunstein SL, Nemoto K (2002) Efficient classical simulation of continuous variable quantum information processes. Phys Rev Lett 88:097904; ArXiv:quant-ph/0109047

    ADS  Google Scholar 

  49. Ladd TD, van Loock P, Nemoto K, Munro WJ, Yamamoto Y (2006) Hybrid quantum repeater based on dispersive cqed interactions between matter qubits and bright coherent light. New J Phys 8:164; ArXiv:quant-ph/0610154v1 doi:10.1088/1367-2630/8/9/184

  50. Spiller TP, Nemoto K, Braunstein SL, Munro WJ, van Loock P, Milburn GJ (2006) Quantum computation by communication. New J Phys 8:30; ArXiv:quant-ph/0509202v3

    Google Scholar 

  51. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86:5188–5191

    ADS  Google Scholar 

  52. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum computation with cluster states. Phys Rev A 68:022312; ArXiv:quant-ph/0301052v2

    ADS  Google Scholar 

  53. Nielsen MA (2004) Optical quantum computation using cluster states. Phys Rev Lett 93:040503; ArXiv:quant-ph/0402005

    ADS  Google Scholar 

  54. Yoran N, Reznik B (2003) Deterministic linear optics quantum computation utilizing linked photon circuits. Phys Rev Lett 91:037903; ArXiv:quant-ph/0303008

    ADS  Google Scholar 

  55. Jozsa R (2005) An introduction to measurement based quantum computation. ArXiv:quant-ph/0508124

    Google Scholar 

  56. Kitaev YA (2003) Fault-tolerant quantum computation by anyons. Annals Phys 303:2–30; ArXiv:quant-ph/9707021v1

    MathSciNet  ADS  MATH  Google Scholar 

  57. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2004) Adiabatic quantum computation is equivalent to standard quantum computation. ArXiv:quant-ph/0405098

    Google Scholar 

  58. Brennen GK, Pachos JK (2007) Why should anyone care about computing with anyons? Proc Roy Soc Lond A 464(2089):1–24; ArXiv:0704.2241v2

    MathSciNet  ADS  Google Scholar 

  59. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in quantum theory. Phys Rev 115:485–491

    MathSciNet  ADS  MATH  Google Scholar 

  60. Young T (1804) Experimental demonstration of the general law of the interference of light. Phil Trans Royal Soc Lon, London, p 94

    Google Scholar 

  61. Jiang L, Brennen GK, Gorshkov AV, Hammerer K, Hafezi M, Demler E, Lukin MD, Zoller P (2007) Anyonic interferometry and protected memories in atomic spin lattices. ArXiv:0711.1365v1

    Google Scholar 

  62. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. ArXiv:quant-ph/0001106

    Google Scholar 

  63. Kieu TD (2006) Quantum adiabatic computation and the travelling salesman problem. ArXiv:quant-ph/0601151v2

    Google Scholar 

  64. Kempe, Kitaev, Regev (2004) The complexity of the local hamiltonian problem. In: Proc 24th FSTTCS. pp 372–383; ArXiv:quant-ph/0406180

    Google Scholar 

  65. Kempe, Kitaev, Regev (2006) The complexity of the local hamiltonian problem. SIAM J Comput 35(5):1070–1097

    MathSciNet  MATH  Google Scholar 

  66. Childs AM, Farhi E, Preskill J (2002) Robustness of adiabatic quantum computation. Phys Rev A 65:012322; ArXiv:quant-ph/0108048

    ADS  Google Scholar 

  67. van Dam S, Hogg, Breyta, Chuang (2003) Experimental implementation of an adiabatic quantum optimization algorithm. Phys Rev Lett 90(6):067903; ArXiv:quant-ph/0302057

    ADS  Google Scholar 

  68. Lloyd S (1996) Universal quantum simulators. Science 273:1073–1078

    MathSciNet  ADS  MATH  Google Scholar 

  69. Berry DW, Ahokas G, Cleve R, Sanders BC (2007) Efficient quantum algorithms for simulating sparse hamiltonians. Commun Math Phys 270:359; ArXiv:quant-ph/0508139v2

    MathSciNet  ADS  Google Scholar 

  70. Somaroo SS, Tseng CH, Havel TF, Laflamme R, Cory DG (1999) Quantum simulations on a quantum computer. Phys Rev Lett 82:5381–5384; ArXiv:quant-ph/9905045

    ADS  Google Scholar 

  71. Abrams DS, Lloyd S (1997) Simulation of many-body fermi systems on a universal quantum computer. Phys Rev Lett 79:2586–2589; ArXiv:quant-ph/9703054v1

    ADS  Google Scholar 

  72. Wu LA, Byrd MS, Lidar DA (2002) Polynomial-time simulation of pairing models on a quantum computer. Phys Rev Lett 89:057904. Due to a proofs mix up there is also an Erratum: 89:139901; ArXiv:quant-ph/0108110v2

    MathSciNet  ADS  Google Scholar 

  73. Brown KR, Clark RJ, Chuang IL (2006) Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance. Phys Rev Lett 97:050504; ArXiv:quant-ph/0601021

    ADS  Google Scholar 

  74. Hameroff SR, Penrose R (1996) Conscious events as orchestrated spacetime selections. J Conscious Stud 3(1):36–53

    Google Scholar 

  75. Khrennikov A (2006) Brain as quantum-like computer. BioSystems 84:225–241; ArXiv:quant-ph/0205092v8

    Google Scholar 

Further Reading

  1. For those who seriously want to learn the quantitative details of quantum computing, this is still the best textbook: Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. CUP, Cambs

    Google Scholar 

  2. For lighter browsing but still with all the technical details, there are several quantum wikis developed by the scientists doing the research:

    Google Scholar 

  3. Quantiki http://www.quantiki.org/wiki/index.php/Main_Page specifically quantum information

  4. Qwiki http://qwiki.stanford.edu/wiki/Main_Page covers wider quantum theory and experiments

  5. For those still struggling with the concepts (which probably means most people without a physics degree or other formal study of quantum theory), there are plenty of popular science books and articles. Please dive in, it's the way the world we all live in works, and there is no reason not dig in deep enough to marvel at the way it fits together and puzzle with the best of us about the bits we can't yet fathom.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Kendon, V. (2009). Quantum Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_429

Download citation

Publish with us

Policies and ethics