Skip to main content

Quantum Dot Spin Transistors, Self-consistent Simulation of

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The electronic and transport properties of quantum dot spintransistors are presented with emphasis on single-electrontunneling and shell structure. A comprehensive modeling approachbased on two methods is developed: (1) quantum dot electronicstructure and confinement potential are determined from theself-consistent solution of the Poisson and Schrödinger equationswithin the spin-density-functional theory in magnetic fieldsand (2) a quantum transport model based on numerically exactdiagonalization of the many-body Schrödinger equation is used todescribe transport properties of quantum dots. In the linear transportregime characterized by a small applied source-drain voltage,single-electron tunneling through the quantum dot reveals theexistence of a shell structure in the ground state electronaddition spectra which magnetic field dependence is determined bycompetition among the many-body interaction effects, confinementpotential strength and magnetic field...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Quantum dot (QD) :

A man-made nanostructure, generally made with semiconductor materials, in which the motion of particles (such as conduction band electrons) is bound in all three spatial directions. As a result of this 3D spatial confinement, quantum dots exhibit a discreet energy spectrum with particle wave functions localized within the quantum dot.

Coulomb blockade :

The increased resistance experienced at small bias voltages by an electronic device comprising of at least two tunnel junctions (terminals), which is manifested in the electrostatic blockade of the current by the charge accumulation on a small conducting island between the terminals.

Single electron transistor :

An electronic device characterized by two tunnel junctions (“source” and “drain”) between which a conducting “island” (QD) is located. The electrostatic potential of the QD island is controlled by a third electrode (the “base”). By changing the controlling voltage on the base electrode, transport channels for electron current through the QD can be opened or closed. When the channel is open, an electron can tunnel into the island on an available energy level from the source contact and then subsequently tunnels out to the drain electrode (single-electron transport).

Spin blockade :

The suppression (partial or total) of the current through a QD device populated by electrons and caused by the Pauli exclusion principle.

Bibliography

  1. LikharevKK (1999) Proc IEEE 87:606

    Google Scholar 

  2. TaruchaS, Austing DG, Honda T, van der Hage RJ, Kouwenhoven LP (1996) Phys RevLett 77:3613

    ADS  Google Scholar 

  3. ElzermanJM, Hanson R, Greidanus JS, van Beveren LHW, De Franceschi S,Vandersypen LMK, Tarucha S, Kouwenhoven LP (2003) Phys Rev B67:161308(R)

    ADS  Google Scholar 

  4. MillikanRA (1911) Phys Rev 32:349

    ADS  Google Scholar 

  5. GorterCJ (1951) Physica (Amsterdam) 17:777

    ADS  Google Scholar 

  6. GiaeverI, Zeller HR (1968) Phys Rev Lett 20:1504; Zeller HR, Giaever I (1969)Phys Rev 181:789

    Google Scholar 

  7. Lambe J,Jaklevic RC (1969) Phys Rev Lett 22:1371

    ADS  Google Scholar 

  8. KulikIO, Shekhter RI (1975) Zh Eksp Teor Fiz 68:623; Sov Phys JETP41:308

    Google Scholar 

  9. KuzminLS, Likharev KK (1987) Pis'ma Zh Eksp Teor Fiz 45:250; Lett JETP45:495

    Google Scholar 

  10. FultonTA, Dolan GJ (1987) Phys Rev Lett 59:109

    ADS  Google Scholar 

  11. AverinDV, Korotkov AN, Likharev KK (1991) Phys Rev B 44:6199; Su B, GoldmanVJ, Cunnigham JE (1992) ibid 46:7644

    Google Scholar 

  12. BeenakkerCW (1991) Phys Rev B 44:1646

    ADS  Google Scholar 

  13. KinaretJM, Meir Y, Wingreen NS, Lee PA, Wen X-G (1992) Phys Rev B46:4681

    ADS  Google Scholar 

  14. KastnerMA (1993) Phys Today 46(1):24

    ADS  Google Scholar 

  15. KouwenhovenLP, Oosterkamp TH, Danoesastro MWS, Eto M, Austing DG, Honda T, TaruchaS (1997) Science 278:1788

    ADS  Google Scholar 

  16. KyriakidisJ, Ladriere PM, Ciorga M, Sachrajda AS, Hawrylak P (2002) Phys Rev B66:035320

    ADS  Google Scholar 

  17. HansonR, Vandersypen LMK, Willems LH, van Beveren Elzerman JM, Vink IT,Kouwenhoven LP (2004) Phys Rev B70:241304(R)

    ADS  Google Scholar 

  18. ZumbühlDM, Marcus CM, Hanson MP, Gossard AC (2004) Phys Rev Lett93:256801

    Google Scholar 

  19. EllenbergerC, Ihn T, Yannouleas C, Landmann U, Ensslin K, Driscoll D, Gossard AC(2006) Phys Rev Lett 96:126806

    ADS  Google Scholar 

  20. LandauLD, Lifshitz E (1977) Quantum mechanics: non-relativistictheory. Pergamon Press, Oxford

    Google Scholar 

  21. Goeppert-MayerM (1949) Phys Rev 75:1969

    ADS  Google Scholar 

  22. EkardtW (1999) Metal clusters. Wiley, New York

    Google Scholar 

  23. SikorskiC, Merkt U (1989) Phys Rev Lett 62:2164

    ADS  Google Scholar 

  24. MeurerB, Heitmann D, Ploog K (1992) Phys Rev Lett68:1371

    ADS  Google Scholar 

  25. BrunnerK, Bockelmann U, Abstreiter G, Walther M, Böhm G, Gänkle T, Weimann G(1992) Phys Rev Lett 69:3216

    Google Scholar 

  26. MaksymPA, Chakraborty T (1990) Phys Rev Lett65:108

    ADS  Google Scholar 

  27. Kohn W(1959) Phys Rev 115:1160; (1961) ibid123:1242

    Google Scholar 

  28. GudmundssonV, Gerhardts RR (1991) Phys Rev B 43:12098

    ADS  Google Scholar 

  29. SmithTP III, Lee KY, Knoedler CM, Hong JM, Kern DP (1988) Phys Rev B38:2172

    ADS  Google Scholar 

  30. HansenW, Smith TP III, Lee KY, Brum JA, Knoedler CM, Kern DP (1989) Phys RevLett 62:2168

    ADS  Google Scholar 

  31. SilsbeeRH, Ashoori RC (1990) Phys Rev Lett 64:1991

    ADS  Google Scholar 

  32. AshooriRC, Silsbee RH, Pfeiffer LN, West KW (1992) Nanostructures andmesoscopic systems. In: Reed M, Kirk W (eds) Proceedings of theint. symp., Santa Fe, May, 1991. Academic, SanDiego

    Google Scholar 

  33. AshooriRC, Störmer HL, Weiner JS, Pfeiffer LN, Pearton SJ, Baldwin KW, West KW(1992) Phys Rev Lett 68:3088

    Google Scholar 

  34. MeiravU, Kastner MA, Wind SJ (1990) Phys Rev Lett65:771

    ADS  Google Scholar 

  35. AshooriRC, Störmer HL, Weiner JS, Pfeiffer LN, Baldwin KW, West KW (1993) PhysRev Lett 71:613

    Google Scholar 

  36. BryantGW (1987) Phys Rev Lett 59:1140

    ADS  Google Scholar 

  37. KumarA, Laux SE, Stern F (1990) Phys Rev B42:5166

    ADS  Google Scholar 

  38. MacucciM, Hess K, Iafrate GJ (1993) Phys Rev B 48:17354; Macucci M, Hess K,Iafrate GJ (1995) Appl Phys J 77:3267

    Google Scholar 

  39. ReimannSM, Koskinen M, Kolehmainen J, Manninen M, Austing DG, Tarucha S (1999)Eur Phys J D 9:105

    ADS  Google Scholar 

  40. MatagneP, Leburton J-P, Austing DG, Tarucha S (2001) Phys Rev B65:085325

    ADS  Google Scholar 

  41. StopaM (1996) Phys Rev B 54:13767

    ADS  Google Scholar 

  42. BednarekS, Szafran B, Adamowski J (2001) Phys Rev B64:195303

    ADS  Google Scholar 

  43. SzafranB, Bednarek S, Adamowski J (2001) Phys Rev B65:035316

    ADS  Google Scholar 

  44. AustingDG, Honda T, Tarucha S (1996) Semicond Sci Technol11:388

    ADS  Google Scholar 

  45. JonesRO, Gunnarsson O (1989) Rev Mod Phys 61:689

    ADS  Google Scholar 

  46. ZhangL-X, Matagne P, Leburton J-P, Hanson R, Kouwenhoven LP (2004) PhysRev B 69:245301

    ADS  Google Scholar 

  47. RavishankarR, Matagne P, Leburton J-P, Martin RM, Tarucha S (2004) Phys Rev B69:035326

    ADS  Google Scholar 

  48. Kim J,Melnikov DV, Leburton J-P, Austing GD, Tarucha S (2006) Phys Rev B74:035307

    ADS  Google Scholar 

  49. PerdewJP, Wang Y (1992) Phys Rev B 45:13244

    ADS  Google Scholar 

  50. AncilottoF, Austing DG, Barranco M, Mayol R, Muraki K, Pi M, Sasaki S, Tarucha S(2003) Phys Rev B 67:205311

    ADS  Google Scholar 

  51. VignaleG, Rasolt M (1987) Phys Rev Lett 59:2360

    ADS  Google Scholar 

  52. Sze SM(1981) Physics of semiconductor devices, 2nd edn. WileyInterscience, New York

    Google Scholar 

  53. BatheK-J (1982) Finite element procedures in engineering analysis. PrenticeHall, New Jersey

    Google Scholar 

  54. FettigJ, Melnikov DV, Sobh N, Leburton J-P (unpublished)

    Google Scholar 

  55. SlaterJC (1972) Adv Quantum Chem 6:1

    ADS  Google Scholar 

  56. FonsecaLRC, Jimenez JL, Leburton J-P, Martin RM (1998) Phys RevB57:4017

    ADS  Google Scholar 

  57. LeeI-H, Ahn K-H, Kim Y-H, Martin RM, Leburton J-P (1999) Phys Rev B60:13720

    ADS  Google Scholar 

  58. AustingDG, Sasaki S, Tarucha S, Reimann SM, Koskinen M, Manninen M (1999) PhysRev B 60:11514

    ADS  Google Scholar 

  59. ReimannS, Manninen MM (2002) Rev Mod Phys 74:1283

    ADS  Google Scholar 

  60. MelnikovDV, Leburton J-P (2006) Phys Rev B73:155301

    ADS  Google Scholar 

  61. KouwenhovenLP, Austing DG, Tarucha S (2001) Rep Progr Phys64:701

    ADS  Google Scholar 

  62. BruceNA, Maksym PA (2000) Phys Rev B 61:4718

    ADS  Google Scholar 

  63. SzafranB, Bednarek S, Adamowski J (2003) Phys Rev B67:115323

    ADS  Google Scholar 

  64. MikhailovSA (2002) Phys Rev B 65:115312

    ADS  Google Scholar 

  65. ReimannSM, Koskinen M, Manninen M (2000) Phys Rev B62:8108

    ADS  Google Scholar 

  66. DrouvelisPS, Schmelcher P, Diakonos FK (2004) Phys Rev B69:155312

    ADS  Google Scholar 

  67. ChakrabortiT (1999) Quantum dots: Survey A of the properties of artificialatoms. North Holland, Amsterdam

    Google Scholar 

  68. SaarikoskiH, Harju A (2005) Phys Rev Lett 94:246803

    ADS  Google Scholar 

  69. SzafranB, Peeters FM, Bednarek S, Adamowski J (2004) Phys Rev B69:125344

    ADS  Google Scholar 

  70. BellucciD, Rontani M, Troiani F, Goldoni G, Molinari E (2004) Phys Rev B69:201308(R)

    ADS  Google Scholar 

  71. StopaM, Marcus CM (2008) Nano Lett 8:1778

    ADS  Google Scholar 

  72. MelnikovDV, Leburton J-P, Taha A, Sobh N (2006) Phys Rev B74:041309(R)

    ADS  Google Scholar 

  73. FujisawaT, Austing DG, Tokura Y, Hirayama Y, Tarucha S (2002) Nature419:278

    ADS  Google Scholar 

  74. DeFranceschi S, Sasaki S, Elzerman JM, van der Wiel WG, Tarucha S,Kouwenhoven LP (2001) Phys Rev Lett 86:878

    ADS  Google Scholar 

  75. AverinDV, Odintsov AA (1989) Phys LettA 140:251

    ADS  Google Scholar 

  76. SukhorukovEV, Burkard G, Loss D (2001) Phys Rev B63:125315

    ADS  Google Scholar 

  77. ThielmannA, Hettler MH, König J, Schön G (2005) Phys Rev Lett95:146805

    Google Scholar 

  78. PfannkucheD, Ulloa SE (1995) Phys Rev Lett 74:1194

    ADS  Google Scholar 

  79. PalaciosJJ, Martín-Moreno L, Chiappe G, Louis E, Tejedor C (1994) Phys RevB50:R5760

    Google Scholar 

  80. BonetE, Deshmukh MM, Ralph DC (2002) Phys Rev B65:045317

    ADS  Google Scholar 

  81. MuralidharanB, Ghosh AW, Datta S (2006) Phys Rev B73:155410

    ADS  Google Scholar 

  82. PettaJR, Johnson AC, Taylor JM, Laird EA, Yacoby A, Lukin MD, Marcus CM,Hanson MP, Gossard AC (2005) Science309:2180

    ADS  Google Scholar 

  83. WagnerM, Merkt U, Chaplik AV (1992) Phys Rev B45:R1951

    ADS  Google Scholar 

  84. MelnikovDV, Fujisawa T, Austing DG, Tarucha S, Leburton J-P (2008) Phys Rev B 77:165340

    ADS  Google Scholar 

  85. GrabertH, Devoret MH (eds) (1992) Single electron tunneling, Series ASINATO,Series B, vol 294. Plenum Press, New York

    Google Scholar 

  86. AgamO, Wingreen NS, Altshuller BA, Ralph DC, Tinkham M (1997) Phys Rev Lett78:1956

    ADS  Google Scholar 

  87. WeinmannD, Häusler W, Kramer B (1995) Phys Rev Lett74:984

    Google Scholar 

  88. BjörkMT, Thelander C, Hansen AE, Jensen LE, Larsson MW, Wallenberg LR,Samuelson L (2004) Nano Lett 4:1621

    Google Scholar 

Download references

Acknowledgments

We are grateful to R. M. Martin and D. G. Austing forhelpful discussions. This work was supported by DARPA-QuIST program, MCCthrough the NSF, and NCSA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Melnikov, D.V., Leburton, JP. (2009). Quantum Dot Spin Transistors, Self-consistent Simulation of. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_434

Download citation

Publish with us

Policies and ethics