Skip to main content

Definition of the Subject

Random Matrix Theory (RMT) is a method of studying the statistical behavior of large complex systems, by defining an ensemble which considersall possible laws of interactions within the system. The important question addressed by random matrix theory is: Given a random matrix ensemble whatare the probability laws which govern its eigenvalues or eigenvectors. This question is pertinent to many areas in physics and mathematics, for instancestatistical behavior of compound nucleus, conductivity in disordered metals, behavior of chaotic systems or zeros of the Riemann zeta function. Thesuccess of random matrices lies in the universality regime of the eigenvalue statistics. There is compelling evidence that when the size of the matrix isvery large then the eigenvalue distribution tends, in a certain sense, towards a limiting distribution. This only depends on the symmetryproperties of the matrix and is independent of the initial probability law imposed on the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This was alreadyknown to Wigner and von Neuman [51].

Abbreviations

Random matrices :

Large matrices with randomly distributed elements obeying the given probability laws and symmetry classes.

Orthogonal ensembles :

Real symmetric random matrix ensembles which are invariant under all orthogonal transformations. Majority of practical systems are described by these ensembles.

Unitary ensembles :

Hermitian random matrix ensembles which are invariant under all unitary transformations.

Symplectic ensembles :

Hermitian self-dual random matrix ensembles which are invariant under all symplectic transformations.

Bibliography

Primary Literature

  1. Almond DP, Bowen CR (2004) Anomalous power law dispersions in AC conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phy Rev Lett 92:1576011–1576014

    Google Scholar 

  2. Almond DP, Vainas B (1999) The dielectric properties of random R-C networks as an explanation of the universal power law dielectric response of solids. J Phys: Condensed Matter 11:9081–9093

    ADS  Google Scholar 

  3. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71:4083

    ADS  Google Scholar 

  4. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509

    Google Scholar 

  5. Bohigas O, Giannoni M-J, Schmit C (1984) Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys Rev Lett 52:1

    MathSciNet  ADS  MATH  Google Scholar 

  6. Clerc P, Giraud G, Laugier JM, Luck JM (1990) The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv Phys 39:191–309

    ADS  Google Scholar 

  7. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of Growing Networks: Exact Solution of the Barabási–Albert's Model. Phys Rev Lett 85:4633

    ADS  Google Scholar 

  8. Dykhne AM (1970) Anomalous resistance of a plasma in a strong magnetic field. Zh Eksp Teor Fiz 59:641–647

    Google Scholar 

  9. Dyson FJ (1962) A Brownian‐motion model for the eigenvalues of a random matrix. J Math Phys 3:1191

    MathSciNet  ADS  MATH  Google Scholar 

  10. Dyson FJ (1962) Statistical theory of the energy levels of complex systems, I. J Math Phys 3:140

    MathSciNet  ADS  MATH  Google Scholar 

  11. Dyson FJ (1962) Statistical theory of the energy levels of complex systems, II. J Math Phys 3:157

    MathSciNet  ADS  Google Scholar 

  12. Dyson FJ (1962) Statistical theory of the energy levels of complex systems, III. J Math Phys 3:166

    MathSciNet  ADS  Google Scholar 

  13. Efetov KB (1983) Supersymmetry and theory of disordered metals. Adv Phys 32:53

    MathSciNet  ADS  Google Scholar 

  14. Eigen M (1971) Selforganisation of sequence space and tensor products of representation spaces. Naturwissenschaften 58:465–523

    ADS  Google Scholar 

  15. Erdős P, Rényi A (1959) On random graphs I. Publ Math 6:290

    Google Scholar 

  16. Ergün G (2002) Human sexual contact network as a bipartite graph. Physica A 308:483

    Google Scholar 

  17. Ergün G, Semicircle to triangular distribution of density of states: Supersymmetric Approach (submitted)

    Google Scholar 

  18. Ergün G, Separation of a large eigenvalue from the bulk of the spectrum (submitted)

    Google Scholar 

  19. Ergün G, Fyodorov YV (2003) Level Curvature distribution in a model of two uncoupled chaotic subsystems. Phys Rev E 68:046124

    Google Scholar 

  20. Ergün G, Rodgers GJ (2002) Growing Random Networks with Fitness. Physica A 303:261

    Google Scholar 

  21. Ergün G, Zheng D (2003) Coupled Growing Networks. Adv Comp Syst 6:4

    Google Scholar 

  22. Farkas IJ, Derényi I, Barabási A-L, Vicsek T (2001) Spectra of real-world graphs: Beyond the semi‐circle law. Phys Rev E 64:026704

    Google Scholar 

  23. Farkas IJ, Derényi I, Jeong H, Neda Z, Oltvai ZN, Ravasz E, Schubert A, Barabási A-L, Vicsek T (2002) Networks in life: Scaling properties and eigenvalue spectra. Physica A 314:25

    Google Scholar 

  24. Fyodorov YV, Chubykalo OA, Izrailev FM, Casati G (1996) Wigner random banded matrices with sparse structure: Local spectral density of states. Phys Rev Lett 76:1603

    ADS  Google Scholar 

  25. Gardner MR, Ashby WR (1970) Connectance of large daynamic systems: Critical values for stability. Nature 228:784

    ADS  Google Scholar 

  26. Gaudin M (1961) Sur la loi limite de l'espacement des valeurs propres d'une matrice aléatoire. Nucl Phys 25:447

    MATH  Google Scholar 

  27. Gaudin M, Mehta ML (1960) On the density of eigenvalues of a random matrix. Nucl Phys 18:420

    MathSciNet  Google Scholar 

  28. Goh K-I, Kahng B, Kim D (2001) Spectra and eigenvectors of scale-free networks. Phys Rev E 64:051903

    ADS  Google Scholar 

  29. Gurevich II, Pevsner MI (1957) Repulsion of nuclear levels. Nucl Phys 2:575

    Google Scholar 

  30. Haake F (2000) Quantum Signatures of Chaos, 2nd edn. Springer, Berlin

    Google Scholar 

  31. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Google Scholar 

  32. Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38:15–28

    Google Scholar 

  33. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629

    ADS  Google Scholar 

  34. Luck JM, Jonckheere T (1998) Dielectric resonances of binary random networks. J Phys A: Math Gen 31:3687–3717

    ADS  MATH  Google Scholar 

  35. Luo F, Zhongb J, Yang Y, Scheuermann RH, Zhou J (2006) Application of random matrix theory to biological networks. Phys Lett A 357:420–423

    ADS  Google Scholar 

  36. May RL (1972) Will a large complex system be stable? Nature 238:413

    ADS  Google Scholar 

  37. McCaskill JS (1984) Localisation threshold for macromolecular quasispecies from continuously distributed replication rates. J Chem Phys 80:5194–5202

    MathSciNet  ADS  Google Scholar 

  38. Mehta ML (1991) Random Matrices, 2nd edn. Academic, San Diego

    MATH  Google Scholar 

  39. Mehta ML, Gaudin M (1960) On the density of eigenvalues of a random matrix. Nuc Phys 18:420

    MathSciNet  Google Scholar 

  40. Mirlin AD (2000) Statistics of energy levels and eigenfunctions in disordered systems. Phys Rep 326:259

    MathSciNet  ADS  Google Scholar 

  41. Mirlin AD, Fyodorov YV (1991) Universality of level correlation function of sparse random matrics. J Phys A 24:2273–2286

    MathSciNet  ADS  MATH  Google Scholar 

  42. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64:026118

    ADS  Google Scholar 

  43. Pellegrini M, Haynor D, Johnson JM (2004) Protein interaction networks. Expert Rev Proteomics 1:239–249

    Google Scholar 

  44. Porter CE, Rosenzweig N (1960) Statistical properties of atomic and nuclear spectra. Suomalaisen Tiedeakatemian Toimituksia (Ann. Acad. Sci. Fennicae) AVI Phys 44:166

    Google Scholar 

  45. Porter CE, Thomas RG (1956) Fluctuations of nuclear reaction widths. Phys Rev 104:483

    ADS  Google Scholar 

  46. Potters M, Bouchaud J-P, Laloux L (2005) Financial applications of random matrix theory: Old laces and new pieces. physics/0512090

    Google Scholar 

  47. Rodgers GJ, Bray AJ (1988) Density of states of a sparse random matrix. Phys Rev B 37:3557

    MathSciNet  ADS  Google Scholar 

  48. Rumschitzki DS (1987) Spectral properties of Eigen evolution matrices. J Math Biol 24:667–680

    MathSciNet  MATH  Google Scholar 

  49. Stäring J, Mehlig B, Fyodorov YV, Luck JM (2003) On the random symmetric matrices with a constraint: The spectral density of random impedence networks. Phys Rev E 67:047101

    Google Scholar 

  50. von Neuman J, Wigner E (1929). Phys Z 30:467

    Google Scholar 

  51. Watts DJ, Strogatz SH (1998) Collective dynamics of “small‐world” networks. Nature 393:440

    ADS  Google Scholar 

  52. Wigner EP (1951) On the statistical distribution of the widths and spacing of nuclear resonance levels. Phil Soc 62:548

    MathSciNet  Google Scholar 

  53. Wigner EP (1955) Characteristic vectors of bordered matrices with infinite dimensions. Ann Math 62:548

    MathSciNet  MATH  Google Scholar 

  54. Wigner EP (1957) Distribution of neutron resonance levels. In: International conference on the neuron interactions with the nucleus, Columbia University, New York, 9–13 September 1957. Columbia Univ. Rept. CU-175 TID-8547

    Google Scholar 

  55. Wigner EP (1957) Results and theory of resonance absorption (Conference on Neutron Physics by Time-of-Flight, Gatlinburg, Tenessee, November 1–2, 1956). Oak Ridge Natl Lab Rept ORNL-2309:59

    Google Scholar 

  56. Wigner EP (1957) Statistical Properties of Real Symmetric Matrices with Many dimensions. In: Can. Math. Congr. Proc., 174. Univ of Toronto Press, Toronto

    Google Scholar 

  57. Wigner EP (1958) On the distribution of the roots of certain symmetric matrices. Ann Math 67:2

    MathSciNet  Google Scholar 

  58. Wishart J (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrica 20A:32

    Google Scholar 

Books and Reviews

  1. Abramowitz M, Stegun I (1972) Handbook of mathematical fucntions, 10th edn. Dover, New York

    Google Scholar 

  2. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Google Scholar 

  3. Bak P (1996) How Nature Works: The science of self‐organised criticality. Copernicus, New York

    Google Scholar 

  4. Barabási A-L (2002) Linked: How everything is connected to everything else and what it means. Perseus, Cambridge

    Google Scholar 

  5. Bellman R (1997) Introduction to Matrix Analysis, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  6. Berezin FA (1987) Introduction to Superanalysis. Reidel, Dordrecht

    MATH  Google Scholar 

  7. Bohigas O (1991) Random matrix theories and chaotic dynamics, Session LII, 1989. Chaos and Quantum Physics, Les Houches

    Google Scholar 

  8. Bollobás B (2001) Random Graphs, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  9. Brody TA, Flores J, French JB, Mello PA, Pandey A, Wong SSM (1981) Random‐matrix physics: spectrum and strength fluctuations. Rev Mod Phys 53:385

    MathSciNet  ADS  Google Scholar 

  10. Cvetković D, Domb M, Sachs H (1995) Spectra of Graphs: Theory and Applications. Johann Ambrosius Barth, Heidelberg

    Google Scholar 

  11. Cvetković D, Rowlinson P, Simić S (1997) Eigenspaces of Graphs. Cambridge Univ Press, Cambridge

    Google Scholar 

  12. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079

    ADS  Google Scholar 

  13. Efetov KB (1997) Supersymmetry in Disorder and Chaos. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  14. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. Proc ACM SIGCOMM Comp Comm Rev 29:251

    Google Scholar 

  15. Fyodorov YV (1995) Basic features of Efetov's supersymmetry approach. Mesoscopic Quantum Physics, Les Houches, Session LXI, 1994

    Google Scholar 

  16. Guhr T, Müller-Groeling A, Weidenmüller HA (1998) Random matrix theories in quantum physics: common concepts. Phys Rep 299:189

    Google Scholar 

  17. Hinch EJ (1991) Perturbation Methods. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  18. Lieb EH, Mattis DC (1966) Mathematical Physics in One Dimension. Academic, New York

    Google Scholar 

  19. Markowitz H (1959) Portfolio Selection: Efficient Diversification of Investments. Wiley, New York

    Google Scholar 

  20. Merzbacher E (1970) Quantum Mechanics, 2nd edn. Wiley, London

    Google Scholar 

  21. Porter CE (1965) Statistical Theories of Spectra: fluctuations. Academic, New York

    Google Scholar 

  22. Stöckmann H-J (2000) Quantum Chaos: an introduction. Cambridge Univ Press, Cambridge

    Google Scholar 

  23. Watts DJ (1999) Small Worlds. Princeton Univ Press, Princeton

    Google Scholar 

  24. Wilks S (1972) Mathematical Statistics. Wiley, Japan

    Google Scholar 

  25. Wilson RJ (1996) Graph Theory. Longman, Edingburg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Ergün, G. (2009). Random Matrix Theory . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_443

Download citation

Publish with us

Policies and ethics