Skip to main content

Regional Climate Models: Linking Global Climate Change to Local Impacts

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

A variety of observations demonstrates that during the last decades the climate has changed. As reported by the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007), a mean increase of temperature by 0.09 K per decade wasobserved globally from 1951 to 1989. Up to now, 2007, this trend has continued. Europe experienced an extraordinary heat wave in summer 2003, withdaily mean temperatures being about 10° warmer locally than the long term mean. The increase of temperature varies depending on the region andseason.

The temperature change seems to be accompanied by changes in several meteorological and hydrological quantities, like number and duration of heatwaves, frost periods, storminess or monthly mean precipitation . In Germany, for example, winter precipitation has increased in parts by more than 30%within the last four decades. In addition, very intense...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Climate models:

They are mathematical representations of the Earth system, in which physical and biogeochemical processes are described numerically. Climate models can be of a global scale or focus on a sub-region (regional climate model).

Downscaling:

Dynamical and statistical techniques to interpret global climatic changes in specific regions.

IPCC emission scenario:

Description of possible developments of the socio-economic system expressed in terms of emissions into the atmosphere.

Projection:

Simulation of possible climatic changes in the future, dependent on emission scenarios, land-use changes and natural variability in the climate system.

Validation:

Comparison of observed data against model result for quality assessment of the model.

Bibliography

  1. Arnell NM (1996) Global warming, river flows and water resources. Wiley,Chichester

    Google Scholar 

  2. Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev100:487–490

    ADS  Google Scholar 

  3. Christensen JH, Christensen OB (2004) Climate modelling: severe summerflooding in Europe. Nature 421:805–806

    ADS  Google Scholar 

  4. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chan81(1):7–30

    Google Scholar 

  5. Davies HC (1976) A latery boundary formulation for multi-levelprediction models. Quart J R Meteorol Soc 102:405–418

    ADS  Google Scholar 

  6. Dethloff K, Abegg C, Rinke A, Hebestad I, Romanov V(2001) Sensitivity of Arctic climate simulations to different boundary layer parameterizations in a regional climate model. Tellus53(A):1–26

    Google Scholar 

  7. Dethloff K, Rinke A, Lynch A, Dorn W, Saha S,Handorf D (2008) Arctic climate change – The ACSYS decade and beyond. Chapter 8: Arctic regional climate models (in press)

    Google Scholar 

  8. Frei C, Christensen JH, Deque M, Jacob D, Jones RG,Vidale PL (2003) Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J Geophys Res108(D3):4124. doi: 10.1029/2002JD002287

  9. Giorgi F (2006) Regional climate modeling: Status andperspectives. J Phys IV France 139(2006):101–118. doi: 10.1051/jp4:2006139008

  10. Giorgi F, Bates GT (1989) The climatological skill ofa regional model over complex terrain. Mon Weather Rev 117:2325–2347

    ADS  Google Scholar 

  11. Giorgi F, Bates GT, Niemann SJ (1993) The multi-yearsurface climatology of a regional atmospheric model over the western United States. J Clim 6:75–95

    ADS  Google Scholar 

  12. Giorgi F, Brodeur CS, Bates GT (1994) Regional climate changescenarios over the United States produced with a nested regional climate model. J Clim 7:375–399

    ADS  Google Scholar 

  13. Giorgi F, Mearns LO, Shields C, McDaniel L (1998) Regionalnested model simulations of present day and 2XCO2 climate over the Central Plains of the US. Clim Chan 40:457–493

    Google Scholar 

  14. Giorgi F, Mearns LO (1999) Introduction to special section: Regional climate modelling revisited. J Geophys Res 104:6335–6352

    Google Scholar 

  15. Hagemann S, Jacob D (2007) Gradient in the climate change signal ofEuropean discharge predicted by a multi-model ensemble. Clim Chan 81(1):309–327

    Google Scholar 

  16. Jacob D (2001) A note to the simulation of the annual andinter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    ADS  Google Scholar 

  17. Jacob D, Podzun R (1997) Sensitivity studies with the regionalclimate model REMO. Meteorol Atmos Phys 63:119–129

    ADS  Google Scholar 

  18. Jacob D, Van den Hurk BJJM, Andrae U, Elgered G,Fortelius C, Graham LP, Jackson SD, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F,Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during theBALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43

    Google Scholar 

  19. Jacob D, Bärring L, Christensen OB, Christensen JH,Hagemann S, Hirschi M, Kjellström E, Lenderink G, Rockel B, Schär C, Seneviratne SI, Somot S, van Ulden A,van den Hurk B (2007) An inter-comparison of regional climate models for Europe: Design of the experiments and model performance. Clim Chan81(1):31–52

    Google Scholar 

  20. Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K(2008) Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Abschlussberichtzum UFOPLAN-Vorhaben 204 41 138, Berichtszeitraum: 1. Oktober 2004 bis 30. September 2007. Max-Planck-Institut fürMeteorologie (MPI-M), Hamburg

    Google Scholar 

  21. Jones RG, Murphy JM, Noguer M (1995) Simulations of climatechange over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateralboundaries. Quart J R Meteorol Soc 121:1413–1449

    Google Scholar 

  22. Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulationof climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model responses to a doublingof carbon dioxide. Quart J R Meteorol Soc 123:265–292

    ADS  Google Scholar 

  23. Lehmann A, Lorenz P, Jacob D (2004) Modelling the exceptionalBaltic Sea flow events in 2002–2003. Geophys Res Lett 31:L21308. doi: 0.1029/2004GL020830

  24. Lorenz P, Jacob D (2005) Influence of regional scale information onthe global circulation: A two-way nesting climate simulation. Geophys Res Lett 32:L18706.doi: 0.1029/2005GL023351

  25. MachenhauerB, Windelband M, Botzet M, Christensen JH, Déqué M, Jones RG, Ruti PM,Visconti G (1998) Validation and analysis of regionalpresent-day climate and climate change simulations over Europe. MPI Report No. 275. MPI, Hamburg

    Google Scholar 

  26. Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. In:ECMWF seminar on numerical methods in atmospheric models,vol 2. ECMWF, Reading

    Google Scholar 

  27. McGregor JL, Katzfey JJ, Nguyen KC (1995) Seasonally varyingnested climate simulations over the Australian region. 3rd Int Conf Model Glob Clim Chan Var. Hamburg, Germany,4–8 Sept 1995

    Google Scholar 

  28. McGregor JL, Katzfey JJ, Nguyen KC (1999) Recent regionalclimate modelling experiments at CISRO. In: Ritchie H (ed) Research activities in atmospheric and oceanic modelling. CAS/JSC Working Group onNumerical Experimentation Report 28. WMO/TD – no. 942. WMO, Geneva, pp 7.37–7.38

    Google Scholar 

  29. Nakicenovic N, Alcamo J, Davis G, de Vries B,Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T,Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P,Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press,Cambridge

    Google Scholar 

  30. Pitman A (2003) Review: The evolution of, and revolution in, land surfaceschemes designed for climate models. Int J Climatol 23:479–510

    Google Scholar 

  31. Rechid D, Jacob D (2006) Influence of seasonally varying vegetationon the simulated climate in Europe. Meteorol Z 15:99–116

    Google Scholar 

  32. Rinke A, Marbaix P, Dethloff K (2004) Internal variability inArctic regional climate simulations: Case study fort he SHEBA year. Clim Res 27:197–209

    Google Scholar 

  33. Roeckner E, Arpe K, Bengtsson L, Christoph M,Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general simulation modelECHMA-4: Model description and simulation of present-day climate. Report 218. Max Planck Institute for Meteorology,Hamburg

    Google Scholar 

  34. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C,Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature427:332–336

    Google Scholar 

  35. Simmons AJ, Burridge DM (1981) An energy and angular- momentumconserving vertical finite-difference scheme and hybrid vertical coordinate. Mon Weather Rev 109:758–766

    ADS  Google Scholar 

Download references

Acknowledgments

I like to thankthe REMO-grooup at the Max Planck Institute for Meteorology for theirenthusiastic support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Jacob, D. (2009). Regional Climate Models: Linking Global Climate Change to Local Impacts. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_449

Download citation

Publish with us

Policies and ethics