Skip to main content

Social Coordination, from the Perspective of Coordination Dynamics

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Social Coordination Dynamics(SCD)explores, at both behavioral and neural levels, the mechanisms mediating the formation and dissolution of bonds between individuals. SCD applies theconcepts, methods and tools of informationally coupled self‐organizing systems (coordination dynamics) to quantify real time social processes. Justas coordination dynamics deals with how the parts of complex systems work together in a meaningful way to achieve goals, so SCD aims to understandthe interplay of forces operating at both individual and collective levels to produce effective social behavior. SCD offers a novel perspective andnew metrics to explore systematically a fundamental form of human bonding (or lack thereof), and the self‐organizing processes that underlieits persistence and change over space and time. SCD therefore complements recent developments in several fields such as sociology, social cognitiveneuroscience, behavioral...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Self‐organization :

Self‐organization lies behind all structure and pattern formation in nature's complex systems, including the human brain. Self‐organization is a principle governing a system where no agent-like entity is ordering the elements, telling them where and what to do. In self‐organizing systems, low‐dimensional dynamics are revealed by changing one (or more) control parameter(s) whose role is simply to move the system through a series of state changes without prescribing its behavioral patterns.

Coordination dynamics:

Coordination dynamics seeks the laws, principles and mechanisms underlying the coordinated behavior of different kinds of components at multiple levels of description (molecules, cells, circuits, etc). It is an overarching conceptual framework that describes, explains and predicts how patterns of coordination form and change at multiple levels of brain and behavior. The brain, mind and behavior are linked by virtue of sharing a common underlying coordination dynamics.

Information exchange :

A remarkable fact is that in contrast to classical dynamics that deal with fundamental quantities such as mass, length and time and their relations, coordination dynamics is informational in nature, dealing with informational quantities of a relational kind that couple different parts of a system or different systems.

Phase transitions :

Phase transitions are the true illustration that a system is self‐organizing. They are spontaneous qualitative pattern changes occurring as parameters are changed quantitatively. When they occur, abrupt switches from one coordinated pattern to another are observed and the dynamics of the entire self‐organizing system is dominated by one or a few collective variables: the order parameters.

Stability :

Stability is a key concept in coordination dynamics. Here the stability is of coordination or collective variables. The (loss of) stability of a self‐organizing system indicates whether a phase transition is to occur. In order to evaluate the stability of a system, one can perturb it and measure the time it takes for the system to return to its initial state, i. e. its relaxation time. A number of other converging measures have been used to measure stability in coordination dynamics such as switching time (the time it takes for the system to switch from one pattern to another when phase transitions occur) and critical fluctuations (the increase of variability of the collective variable in the vicinity of the phase transition).

Bibliography

Primary Literature

  1. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: Role of the STS region. Trends Cogn Sci 4:267–278

    Google Scholar 

  2. Balaban E (2004) Neurobiology - Why voles stick together. Nature 429:711–712

    ADS  Google Scholar 

  3. Bardy BG, Oullier O, Bootsma RJ, Stoffregen TA (2002) Dynamics of human postural transitions. J Exp Psychol Hum Percept Perform 28:499–514

    Google Scholar 

  4. Barsalou LW, Niedenthal PM, Barbey AK, Ruppert JA (2003) Social embodiment. Psychol Learn Motiv 43:43–92

    Google Scholar 

  5. Bennett M, Schatz MF, Rockwood H, Wiesenfeld K (2002) Huygens’s clocks. Proc Roy Soc Lond A Math Physic Engineer Sci 458:563–579

    MathSciNet  Google Scholar 

  6. Bosbach S, Cole J, Prinz W, Knoblich G (2005) Inferring another’s expectation from action: The role of peripheral sensation. Nat Neurosci 8:1295–1297

    Google Scholar 

  7. Bottani S (1996) Synchronization of integrate and fire oscillators with global coupling. Phys Rev e 54:2334–2350

    ADS  Google Scholar 

  8. Brass M, Heyes C (2005) Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci 9:489–495

    Google Scholar 

  9. Buchanan JJ, Kelso JA (1993) Posturally induced transitions in rhythmic multijoint limb movements. Exp Brain Res 94:131–142

    Google Scholar 

  10. Camerer CF (2003) Behavioral game theory: Experiments in strategic interaction. Princeton University Press, Princeton

    Google Scholar 

  11. Camerer CF, Loewenstein G, Prelec D (2005) Neuroeconomics: How neuroscience can inform economics. J Econ Lit XLIII:9–64

    Google Scholar 

  12. Carson RG (2004) Governing coordination. Why do muscles matter? In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: Issues and trends. Springer, Berlin, pp 141–154

    Google Scholar 

  13. Carson RG, Kelso JAS (2004) Governing coordination: behavioural principles and neural correlates. Exp Brain Res 154:267–274

    Google Scholar 

  14. Condon WS, Sander LW (1974) Neonate movement is synchronized with adult speech - Interactional participation and language acquisition. Science 183:99–101

    ADS  Google Scholar 

  15. de Guzman GC, Tognoli E, Lagarde J, Jantzen KJ, Kelso JAS (2005) Effects of biological relevance of the stimulus in mediating spontaneous visual social coordination. Society Neurosci Program 867(21)

    Google Scholar 

  16. de Rugy A, Salesse R, Oullier O, Temprado JJ (2006) A neuro‐mechanical model for interpersonal coordination. Biol Cybern 94:427–443

    Google Scholar 

  17. Decety J, Sommerville JA (2003) Shared representations between self and other: A social cognitive neuroscience view. Trends Cogn Sci 7:527–533

    Google Scholar 

  18. Fehr E, Camerer CF (2007) Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn Sci 11:419–427

    Google Scholar 

  19. Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in the human brain: Spatial mode dynamics. Int J Bifurc Chaos 2:917–939

    Google Scholar 

  20. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Google Scholar 

  21. Goldman MS, Levine JH, Major G, Tank DW, Seung HS (2003) Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb Cortex 13:1185–1195

    Google Scholar 

  22. Greely H (2007) On neuroethics. Science 318:533

    Google Scholar 

  23. Grèzes J, Fonlupt P, Bertenthal B, Delon‐Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions? Neuroimage 13:775–785

    Google Scholar 

  24. Grèzes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to mirror and canonical neurons in the human brain: An fMRI study. Neuroimage 18:928–937

    Google Scholar 

  25. Haken H (1983) Synergetics: An introduction. Springer, Berlin

    Google Scholar 

  26. Haken H (1996) Principles of brain functioning: A synergetic approach to brain activity, behavior and cognition. Springer, Berlin

    Google Scholar 

  27. Haken H, Kelso JAS, Bunz H (1985) A theoretical‐model of phase‐transitions in human hand movements. Biol Cybern 51:347–356

    MathSciNet  Google Scholar 

  28. Hazy JK, Goldstein JA, Lichtenstein BB (2007) Complex systems leadership theory: New perspectives from complexity science on social and organizational effectiveness. ISCE Publishing Company, Mansfield

    Google Scholar 

  29. Hichri W, Kirman AP (2007) The emergence of coordination in public good games. Europ J Phys B 55:149–159

    MathSciNet  ADS  Google Scholar 

  30. Hugenii C (1673) Horologium oscillatorium. Apud F. Muguet, Paris

    Google Scholar 

  31. Iacoboni M, Molnar‐Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:529–535

    Google Scholar 

  32. Insel TR, Fernald RD (2004) How the brain processes social information: Searching for the social brain. Annu Rev Neurosci 27:697–722

    Google Scholar 

  33. Issartel J, Marin L, Cadopi M (2007) Unintended interpersonal co‐ordination: can we march to the beat of our own drum? Neurosci Lett 411:174–179

    Google Scholar 

  34. Jantzen KJ, Steinberg FL, Kelso JAS (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Nat Acad Sci USA 101:6815–6820

    ADS  Google Scholar 

  35. Jantzen KJ, Steinberg FL, Kelso JAS (2005) Functional MRI reveals the existence of modality and coordination‐dependent timing networks. Neuroimage 25:1031–1042

    Google Scholar 

  36. Kelso JAS (1981) Contrasting perspectives on order and regulation in movement. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, pp 437–457

    Google Scholar 

  37. Kelso JAS (1984) Phase‐transitions and critical behavior in human bimanual coordination. Am J Physiol 246:1000–1004

    Google Scholar 

  38. Kelso JAS (1991) Behavioral and neural pattern generation: The concept of NBDS. In: Koepchen HP, Huopaniemi T (eds) Cardiorespiratory and motor coordination. Springer, Munich, pp 224–238

    Google Scholar 

  39. Kelso JAS (1992) Coordination dynamics of human brain and behavior. Springer Proc Phys 69:223–234

    Google Scholar 

  40. Kelso JAS (1994) The informational character of self‐organized coordination dynamics. Hum Mov Sci 13:393–413

    Google Scholar 

  41. Kelso JAS (1995) Dynamic Patterns: The self‐organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  42. Kelso JAS (2000) Principles of dynamic pattern formation and change for a science of human behavior. In: Bergman R, Cairns RB, Nilsson LG, Nystedt L (eds) Developmental science and the holistic approach . Lawrence Erlbaum Associates, Mahaw, pp 63–83

    Google Scholar 

  43. Kelso JAS (2005) Context, components and complexity. Invited paper, Plexus Institute Summit, Delray Beach, September 11

    Google Scholar 

  44. Kelso JAS (2007) The Haken–Kelso–Bunz Model. Scholarpedia (Computational Neuroscience/Dynamical Systems). http://www.scholarpedia.org/article/Haken-Kelso-Bunz_model

  45. Kelso JAS, Engstrøm DA (2006) The complementary nature. MIT Press, Cambridge

    Google Scholar 

  46. Kelso JAS, Scholz JP, Schöner G (1986) Dynamics govern switching among patterns of coordination. Phys Lett A 134:8–12

    Google Scholar 

  47. Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phaselocked modes, phase transitions and component oscillators in coordinated biological motion. Physica Scripta 35:79–87

    Google Scholar 

  48. Kelso JAS, DelColle J, Schöner G (1990) Action‐perception as a pattern formation process. In: Jeannerod M (ed) Attention and Performance XIII. Erlbaum, Hillsdale, pp 139–169

    Google Scholar 

  49. Kelso JAS, Bressler SL, de Guzman GC, Ding M, Fuchs A, Holroyd T (1991) Cooperative and critical phenomena in the human brain revealed by multiple SQUIDS. In: Duke D, Pritchards W (eds) Measuring chaos in the human brain. World Scientific, New Jersey, pp 97–112

    Google Scholar 

  50. Kelso JAS, Bressler SL, de Guzman GC, Ding M, Fuchs A, Holroyd T (1992) A phase‐transition in human brain and behavior. Phys Lett A 169:134–144

    ADS  Google Scholar 

  51. Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392:814–818

    ADS  Google Scholar 

  52. Kelso JAS, Fuchs A, Jirsa VK (1999) Traversing scales of brain and behavioral organization. I.-III. In: Uhl C (ed) Analysis of neurophysiological brain functioning. Springer, Heidelberg, pp 73–125

    Google Scholar 

  53. Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proc R Soc Lond B Biol Sci 268:1207–1213

    Google Scholar 

  54. Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525

    Google Scholar 

  55. Konner M (2004) The ties that bind - Attachment: the nature of the bonds between humans are becoming accessible to scientific investigation. Nature 429:705

    ADS  Google Scholar 

  56. Körding KP, Fukunaga I, Howard IS, Ingram JN, Wolpert DM (2004) A neuroeconomics approach to inferring utility functions in sensorimotor control. PLoS Biol 2:1652–1656

    Google Scholar 

  57. Kuramoto Y (1984) Chemical oscillations, waves, and turbulences. Springer, Berlin

    Google Scholar 

  58. Lagarde J, Kelso JAS (2006) Binding of movement, sound and touch: multimodal coordination dynamics. Exp Brain Res 173:673–688

    Google Scholar 

  59. Lagarde J, Kelso JAS, Peham C, Licka T (2005) Coordination dynamics of the horse-rider system. J Mot Behav 37:418–424

    Google Scholar 

  60. Lagarde J, de Guzman GC, Oullier O, Kelso JAS (2006) Interpersonal interactions during boxing: Data and model. J Sport Exerc Psychol 28: S108

    Google Scholar 

  61. Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  62. Marsh KL, Richardson MJ, Baron RM, Schmidt RC (2006) Contrasting approaches to perceiving and acting with others. Ecol Psychol 18:1–37

    Google Scholar 

  63. Mayville JM, Bressler SL, Fuchs A, Kelso JAS (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory‐motor coordination. Exp Brain Res 127:371–381

    Google Scholar 

  64. McGarva AR, Warner RM (2003) Attraction and social coordination: Mutual entrainment of vocal activity rhythms. J Psycholing Res 32:335–354

    Google Scholar 

  65. McNeill WH (1995) Keeping together in time. Harvard University Press, Cambridge

    Google Scholar 

  66. Mechsner F (2004) A perceptual‐cognitive approach to bimanual coordination. In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: Issues and Trends. Springer, Berlin, pp 177–195

    Google Scholar 

  67. Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    ADS  Google Scholar 

  68. Motter AE, Nishikawa T, Lai YC (2003) Large-scale structural organization of social networks. Phys Rev E 68:e036105-e036110

    ADS  Google Scholar 

  69. Mottet D, Guiard Y, Ferrand T, Bootsma RJ (2001) Two‐handed performance of a rhythmical fitts task by individuals and dyads. J Exp Psychol Hum Percept Perform 27:1275–1286

    Google Scholar 

  70. Néda Z, Ravasz E, Vicsek T, Brechet Y, Barabasi AL (2000) Physics of the rhythmic applause. Phys Rev e 61:6987–6992

    Google Scholar 

  71. Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabasi AL (2000) The sound of many hands clapping - Tumultuous applause can transform itself into waves of synchronized clapping. Nature 403:849–850

    Google Scholar 

  72. Nicolis G, Prigogine I (1977) Self‐organization in non‐equilibrium systems. Wiley, New York

    Google Scholar 

  73. Oullier O, Kelso JAS (2006) Neuroeconomics and the metastable brain. Trends Cogn Sci 10:353–354

    Google Scholar 

  74. Oullier O, Temprado JJ (2005) The structure of visual backgrounds modulates interpersonal coordination dynamics in a virtual environment. J Sport Exerc Psychol 27:S118-S119

    Google Scholar 

  75. Oullier O, Bardy BG, Stoffregen TA, Bootsma RJ (2002) Postural coordination in looking and tracking tasks. Hum Mov Sci 21:147–167

    Google Scholar 

  76. Oullier O, de Guzman GC, Jantzen KJ, Kelso JAS (2003) On context dependence of behavioral variability in inter‐personal coordination. Int J Comput Sci Sport 2:126–128

    Google Scholar 

  77. Oullier O, de Guzman GC, Jantzen KJ, Lagarde JF, Kelso JAS (2004) Spontaneous interpersonal synchronization is modulated by the degree of visual coupling. J Sport Exerc Psychol 26:S11-S11

    Google Scholar 

  78. Oullier O, Bardy BG, Stoffregen TA, Bootsma RJ (2004) Task‐specific stabilization of postural coordination during stance on a beam. Mot Control 8:174–187

    Google Scholar 

  79. Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2005) Neural substrates of real and imagined sensorimotor coordination. Cereb Cortex 15:975–985

    Google Scholar 

  80. Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JAS (2005) Spontaneous interpersonal synchronization. In: Peham C, Schöllom WI, Verwey W (eds) European workshop on movement sciences: Mechanics‐Physiology‐Psychology. Sportverlag, Köln, pp 34–35

    Google Scholar 

  81. Oullier O, Kelso JAS, Kirman AP (2008) Neuroeconomics: A dynamical systems perspective. Rev Econ Pol 118:51–62

    Google Scholar 

  82. Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JAS (2008) Social coordination dynamics: Measuring human bonding. Soc Neurosci 3:178–192

    Google Scholar 

  83. Richardson MJ, Marsh KL, Schmidt RC (2005) Effects of visual and verbal interaction on unintentional interpersonal coordination. J Exp Psychol Hum Percept Perform 31:62–79

    Google Scholar 

  84. Richardson MJ, Marsh KL, Isenhower RW, Goodman JR, Schmidt RC (2007) Rocking together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci 26:867–891

    Google Scholar 

  85. Rizzolatti G, Craighero L (2004) The mirror‐neuron system. Annu Rev Neurosci 27:169–192

    Google Scholar 

  86. Schmidt RC, O’Brien B (1997) Evaluating the dynamics of unintended interpersonal coordination. Ecol Psychol 9:189–206

    Google Scholar 

  87. Schmidt RC, Richardson MJ (2008) Dynamics of interpersonal coordination. In: Fuchs A, Jirsa VK (eds) Springer, Heidelberg, pp 281–308

    Google Scholar 

  88. Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–47

    Google Scholar 

  89. Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Google Scholar 

  90. Schurmann M, Hesse MD, Stephan KE, Saarela M, Zilles K, Hari R, Fink GR (2005) Yearning to yawn: the neural basis of contagious yawning. Neuroimage 24:1260–1264

    Google Scholar 

  91. Shockley K, Baker AA, Richardson MJ, Fowler CA (2007) Articulatory constraints on interpersonal postural coordination. J Exp Psychol Hum Percept Perform 33:201–208

    Google Scholar 

  92. Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176

    Google Scholar 

  93. Solnick SJ, Schweitzer ME (1999) The Influence of Physical Attractiveness and Gender on Ultimatum Game Decisions. Organ Behav Hum Decis Process 79:199–215

    Google Scholar 

  94. Sommerville JA, Decety J (2006) Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychon Bull Rev 13:179–200

    Google Scholar 

  95. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25:9339–9346

    Google Scholar 

  96. Temprado JJ, Laurent M (2004) Attentional load associated with performing and stabilizing a between‐persons coordination of rhythmic limb movements. Acta Psychol 115:1–16

    Google Scholar 

  97. Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22:339–363

    Google Scholar 

  98. Tognoli E, Magne C, de Guzman GC, Kelso JAS (2007) Brain rhythms underlying intentional social coordination. Society Neurosci Program 304

    Google Scholar 

  99. Tognoli E, Lagarde J, de Guzman GC, Kelso JA (2007) The phi complex as a neuromarker of human social coordination. Proc Nat Acad Sci USA 104:8190–8195

    ADS  Google Scholar 

  100. Turvey MT (2004) Impredicativity, dynamics and the perception‐action divide. In: Jirsa VK, Kelso JAS (eds) Coordination Dynamics: Issues and Trends. Springer, Berlin

    Google Scholar 

  101. Vallacher RR, Nowak A (1997) The emergence of dynamical social psychology. Psychol Inquiry 8:73–99 (and commentaries therein)

    Google Scholar 

  102. van Ulzen NR, Lamoth CJ, Daffertshofer A, Semin GR, Beek PJ (2008) Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neurosci Lett 432:88–93

    Google Scholar 

  103. Vinkovic D, Kirman A (2006) A physical analogue of the Schelling model. Proc Nat Acad Sci USA 103:19261–19265

    ADS  Google Scholar 

  104. Wallenstein GV, Kelso JAs, Bressler SL (1995) Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 84:626–634

    Google Scholar 

  105. Wheeler ME, Peterson SE, Buckner RL (2004) Memory’s echo: Vivid remembering reactivates sensory‐specific cortex (vol 97, pg 11125, 2000). Proc Nat Acad Sci USA 101:5181

    Google Scholar 

  106. Winfree AT (1967) Biological rhythms and behavior of populations of coupled oscillators. J Theor Biol 16:15–42

    Google Scholar 

  107. Winfree AT (1980) The geometry of biological time. Springer, New York

    Google Scholar 

  108. Winfree AT (2002) On emerging coherence. Science 298:2336–2337

    Google Scholar 

Books and Reviews

  1. Frith C, Wolpert DM (2004) The neuroscience of social interaction: Decoding, imitating and influencing the actions of others. Oxford University Press, Oxford

    Google Scholar 

  2. Fuchs A, Jirsa VK (eds) (2008) Coordination: Neural, behavioral and social dynamics. Springer, Berlin

    Google Scholar 

  3. Jantzen KJ, Kelso JAS (2007) Neural coordination dynamics of human sensorimotor behavior: A Review. In: Jirsa VK, McIntosh AR (eds) Handbook on brain connectivity. Springer, Berlin, pp 421–461

    Google Scholar 

  4. Jeannerod M (2006) Motor cognition: What actions tell to the self. Oxford University Press, Oxford

    Google Scholar 

  5. Jirsa VK, Kelso JAS (2004) Coordination dynamics: Issues and trends. Springer, Berlin

    Google Scholar 

  6. Kelso JAS (1995) Dynamic Patterns: The self‐organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  7. Kelso JAS, Engstrøm DA (2006) The complementary nature. MIT Press, Cambridge

    Google Scholar 

  8. Oullier O, Jantzen KJ (2008) Neural indices of behavioral instability in coordination dynamics. In: Fuchs A, Jirsa VK (eds) Springer, Berlin, pp 205–227

    Google Scholar 

  9. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: A universal concept in nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  10. Rizzolatti G, Craighero L (2004) The mirror‐neuron system. Ann Rev Neurosci 27:169–192

    Google Scholar 

  11. Sommerville JA, Decety J (2006) Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychon Bull Rev 13:179–200

    Google Scholar 

  12. Strogatz SH (2003) Sync: The emerging science of spontaneous order. Hyperion Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank their collaborators at the Human Brain andBehavior Laboratory (Center for Complex Systems and Brain Sciences) who co‐authored the articles on social coordination dynamics reportedin this article: Drs. Gonzalo C. de Guzman (Florida Atlantic University), Kelly J. Jantzen (Washington Western University), Julien Lagarde (Université de Montpellier I), Cyrille Magne(Middle Tenesse State University) and Emmanuelle Tognoli (Florida AtlanticUniversity). Amélie L. and Audrey O. should also be thanked for letting the authors use their beautiful hands and eyes in all figures. Wewish to thank the following institutions for supporting our research and the writing of this article. The US National Institutes ofHealth (NIMH Innovation Grant MH 42900 and MH080838), the Pierre de Fermat Chair of the Région Midi-Pyrénées (France) to J.A.S.K,and the Centre National de la Recherche Scientifique (Programme CNRS Neuroinformatique to O.O.). Correspondence should beaddressed to: Olivier Oullier (olivier@oullier.fr) or J. A. Scott Kelso (kelso@ccs.fau.edu).

For additional information pleasevisit the following websites: www.oullier.fr and www.ccs.fau.edu/section_links/HBBLv2/index.html

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Oullier, O., Kelso, J.A.S. (2009). Social Coordination, from the Perspective of Coordination Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_486

Download citation

Publish with us

Policies and ethics