Skip to main content

Social Processes, Physical Models of

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Modeling social phenomena as if they were manifestations of mutual interactions of physical objects is the ultimate goal of the reductionistapproach to reality. Both the inanimate and animate worlds, including all the behavior of humans, would be traced back to the properties of atoms andmolecules. This program is absolutely unrealizable, though. On the other hand, the discipline of sociophysics tries to bypass the brute-force approach by developing schematically effective models which aim atdescribing reality at a “macroscopic”, rather than microscopic, level.

For example, when one wants to model the behavior of a large assembly of humans facing the necessity of choosing between two options, it iscustomary to neglect all details of the behavior of the people involved and describe their states by two-value quantities, such as \( { s=+1 } \) or \( { s=-1 } \); physicists call them spins. The interactions are often expressed usinga cost function, which...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Absorbing state:

In a stochastic process, a state from which there is no way out. Once the system reaches the absorbing state, it stays there forever.

Complete graph:

A graph where every pair of vertices is connected by an edge.

Configuration space:

The ensemble of all allowed states (configurations) a model system can reach. Any point in configuration space represents one such state.

Graph:

an assembly of points (vertices), some of which are connected by lines (edges).

Hypercubic lattice:

A generalization of a rectangular plane mesh; a graph embedded in a space of arbitrary dimensionality d. Assuming rectangular coordinates \( { x_1, x_2,\ldots, x_d } \), the coordinates of the vertices in a hypercubic lattice are all whole numbers.

Markov process:

A special type of stochastic process. In a Markov process the system changes its state randomly and, most importantly, the changes of state are independent of history. A Markov process is a memoryless system.

Random walk:

A stochastic process describing hops of a particle to randomly chosen neighbor sites on a lattice.

Stochastic process:

A sequence of random events. At each time t, which may be either discrete (\( { t=1,2 } \), etc.) or continuous, a new random variable is introduced representing the outcome of the process in that time. Also called a random process.

Bibliography

Primary Literature

  1. Comte A (1822) Plan des travaux scientifiques nécessaires pour réorganiser la société

    Google Scholar 

  2. Comte A (1839) Cours de philosophie positive, tome IV, 46e leçon. Bachelier Paris

    Google Scholar 

  3. Chigier NA, Stern EA (eds) (1975) Collective phenomena and the applicatios of physics to other fields of science. Brain Research Publications, Fayetteville

    Google Scholar 

  4. Callen E, Shapero D (1974) A theory of social imitation. Phys Today 27(7):23–28

    Google Scholar 

  5. Weidlich W (1991) Physics and social science – The approach of synergetics. Phys Rep 204:1–163

    MathSciNet  ADS  Google Scholar 

  6. Anderson PW, Arrow KJ, Pines D (1988) The economy as an evolving complex system. Addison Wesley, Reading

    Google Scholar 

  7. Galam S (2004) Sociophysics: A personal testimony. Physica A 336:49–55

    MathSciNet  ADS  Google Scholar 

  8. Galam S, Gefen Y, Shapir Y (1982) Sociophysics: A new approach of sociological collective behaviours. I. Mean‐behaviour description of a strike. J Math Sociol 9:1–13

    Google Scholar 

  9. Galam S, Moscovici S (1991) Towards a theory of collective phenomena: Consensus and attitude changes in groups. Eur J Soc Psychol 21:49–74

    Google Scholar 

  10. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  11. Vega‐Redondo F (1996) Evolution, games, and economic behaviour. Oxford University Press, Oxford

    Google Scholar 

  12. Nash JF (1950) Equilibrium points in n‑person games. Proc Natl Acad Sci USA 36:48–49

    MathSciNet  ADS  Google Scholar 

  13. Nash JF (1950) The bargaining problem. Econometrica 18:155–162

    MathSciNet  Google Scholar 

  14. Marsili M, Zhang YC (1997) Fluctuations around Nash equilibria in game theory. Physica A 245:181–188

    MathSciNet  ADS  Google Scholar 

  15. Axelrod R (1980) Effective choice in the prisoner's dilemma. J Confl Resolut 24:3–25

    Google Scholar 

  16. Axelrod R (1980) More effective choice in the prisoner's dilemma. J Confl Resolut 24:379–403

    Google Scholar 

  17. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    MathSciNet  ADS  Google Scholar 

  18. Lindgren K (1991) Evolutionary phenomena in simple dynamics. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial Life II. Addison‐Wesley, Readwood City, pp 295–312

    Google Scholar 

  19. Lindgren K (1997) Evolutionary dynamics in game‐theoretic models. In: Arthur WB, Durlauf SN, Lane DA (eds) The economy as an evolving complex system II. Perseus, Reading, pp 337–367

    Google Scholar 

  20. Nowak MA, May M (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    ADS  Google Scholar 

  21. Schweitzer F, Behera L, Muhlenbein H (2002) Evolution of cooperation in a spatial prisoner's dilemma. Adv Compl Syst 5:269–299

    MathSciNet  Google Scholar 

  22. Szabó G, Töke C (1998) Evolutionary prisoner's dilemma game on a square lattice. Phys Rev E 58:69–73

    Google Scholar 

  23. Chiappin JRN, de Oliveira MJ (1999) Emergence of cooperation among interacting individuals. Phys Rev E 59:6419–6421

    ADS  Google Scholar 

  24. Lim YF, Chen K, Jayaprakash C (2002) Scale‐invariant behavior in a spatial game of prisoner's dilemma. Phys Rev E 65:026134

    ADS  Google Scholar 

  25. Szabó G, Vukov J, Szolnoki A (2005) Phase diagrams for an evolutionary prisoner's dilemma game on two‐dimensional lattices. Phys Rev E 72:047107

    Google Scholar 

  26. Abramson G, Kuperman M (2001) Social games in a social network. Phys Rev E 63:030901(R)

    ADS  Google Scholar 

  27. Ebel H, Bornholdt S (2002) Evolutionary games and the emergence of complex networks. arXiv:cond-mat/0211666 (Preprint)

    Google Scholar 

  28. Ebel H, Bornholdt S (2002) Coevolutionary games on networks. Phys Rev E 66:056118

    ADS  Google Scholar 

  29. Zimmermann MG, Eguíluz VM (2005) Cooperation, social networks, and the emergence of leadership in a prisoner's dilemma with adaptive local interactions. Phys Rev E 72:056118

    Google Scholar 

  30. Vukov J, Szabó G, Szolnoki A (2006) Cooperation in noisy case: Prisoner's dilemma game on two types of regular random graphs. cond-mat/0603419

    Google Scholar 

  31. Clifford P, Sudbury A (1973) A model for spatial conflict. Biometrika 60:581–588

    MathSciNet  Google Scholar 

  32. Holley RA, Liggett TM (1975) Ergodic theorems for weakly interacting infinite systems and the voter model. Ann Prob 3:643–663

    MathSciNet  Google Scholar 

  33. Liggett TM (1985) Interacting particle systems. Springer, Berlin

    Google Scholar 

  34. Redner S (2001) A guide to first‐passage processes. Cambridge University Press, Cambridge

    Google Scholar 

  35. Scheucher M, Spohn H (1988) A soluble kinetic model for spinodal decomposition. J Stat Phys 53:279–294

    MathSciNet  ADS  Google Scholar 

  36. Krapivsky PL (1992) Kinetics of monomer‐monomer surface catalytic reactions. Phys Rev A 45:1067–1072

    ADS  Google Scholar 

  37. Frachebourg L, Krapivsky PL (1996) Exact results for kinetics of catalytic reactions. Phys Rev E 53:R3009–R3012

    ADS  Google Scholar 

  38. Ben-Naim E, Frachebourg L, Krapivsky PL (1996) Coarsening and persistence in the voter model. Phys Rev E 53:3078–3087

    ADS  Google Scholar 

  39. Dornic I, Chaté H, Chave J, Hinrichsen H (2001) Critical coarsening without surface tension: The universality class of the voter model. Phys Rev Lett 87:045701

    Google Scholar 

  40. Al Hammal O, Chaté H, Dornic I, Muñoz MA (2005) Langevin description of critical phenomena with two symmetric absorbing states. Phys Rev Lett 94:230601

    Google Scholar 

  41. Castellano C, Fortunato S, Loreto V (2007) Statistical physics of social dynamics. arXiv:0710 3256

    Google Scholar 

  42. ben‐Avraham D, Considine D, Meakin P, Redner S, Takayasu H (1990) Saturation transition in a monomer‐monomer model of heterogeneous catalysis. J Phys A: Math Gen 23:4297–4312

    Google Scholar 

  43. Liggett TM (1999) Stochastic interacting systems: Contact, voter, and exclusion processes. Springer, Berlin

    Google Scholar 

  44. Derrida B, Hakim V, Pasquier V (1996) Exact exponent for the number of persistent spins in the zero‐temperature dynamics of the one‐dimensional Potts model. J Stat Phys 85:763–797

    MathSciNet  ADS  Google Scholar 

  45. Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series, and products, 5th edn. Academic Press, San Diego

    Google Scholar 

  46. Cox JT (1989) Coalescing random walks and voter model consensus times on the torus in \( { \mathbb{Z}^d } \). Ann Prob 17:1333–1366

    Google Scholar 

  47. Galam S (1986) Majority rule, hierarchical structures, and democratic totalitarianism: A statistical approach. J Math Psychol 30:426–434

    Google Scholar 

  48. Galam S (1990) Social paradoxes of majority rule voting and renormalization group. J Stat Phys 61:943–951

    MathSciNet  ADS  Google Scholar 

  49. Galam S (1999) Application of statistical physics to politics. Physica A 274:132–139

    ADS  Google Scholar 

  50. Galam S (2000) Real space renormalization group and totalitarian paradox of majority rule voting. Physica A 285:66–76

    ADS  Google Scholar 

  51. Galam S, Wonczak S (2000) Dictatorship from majority rule voting. Eur Phys J B 18:183–186

    ADS  Google Scholar 

  52. Schneier B (1996) Applied cryptography, 2nd edn. Wiley, New York

    Google Scholar 

  53. Krapivsky PL, Redner S (2003) Dynamics of majority rule in two-state interacting spin systems. Phys Rev Lett 90:238701

    ADS  Google Scholar 

  54. Slanina F, Lavička H (2003) Analytical results for the Sznajd model of opinion formation. Eur Phys J B 35:279–288

    Google Scholar 

  55. Plischke M, Bergersen B (1994) Equilibrium statistical physics. World Scientific, Singapore

    Google Scholar 

  56. Galam S (2004) Contrarian deterministic effects on opinion dynamics: The hung elections scenario. Physica A 333:453–460

    MathSciNet  ADS  Google Scholar 

  57. Stauffer D, Sá Martins JS (2004) Simulation of Galam's contrarian opinions on percolative lattices. Physica A 334:558–565

    Google Scholar 

  58. Florian R, Galam S (2000) Optimizing conflicts in the formation of strategic alliances. Eur Phys J B 16:189–194

    ADS  Google Scholar 

  59. Galam S (2002) Minority opinion spreading in random geometry. Eur Phys J B 25:403–406

    ADS  Google Scholar 

  60. Galam S (2002) The September 11 attack: A percolation of individual passive support. Eur Phys J B 26:269–272

    ADS  Google Scholar 

  61. Galam S (2003) Modelling rumors: The no plane Pentagon french hoax case. Physica A 320:571–580

    MathSciNet  ADS  Google Scholar 

  62. Galam S (2003) Global physics: From percolation to terrorism, guerilla warfare and clandestine activities. Physica A 330:139–149

    MathSciNet  ADS  Google Scholar 

  63. Galam S, Mauger A (2003) On reducing terrorism power: A hint from physics. Physica A 323:695–704

    ADS  Google Scholar 

  64. Galam S, Vignes A (2005) Fashion, novelty and optimality: An application from Physics. Physica A 351:605–619

    ADS  Google Scholar 

  65. Galam S (2004) The dynamics of minority opinions in democratic debate. Physica A 336:56–62

    MathSciNet  ADS  Google Scholar 

  66. Galam S (2004) Unifying local dynamics in two-state spin systems. cond-mat/0409484

    Google Scholar 

  67. Galam S (2005) Local dynamics vs. social mechanisms: A unifying frame. Europhys Lett 70:705–711

    ADS  Google Scholar 

  68. Gekle S, Peliti L, Galam S (2005) Opinion dynamics in a three‐choice system. Eur Phys J B 45:569–575

    ADS  Google Scholar 

  69. Galam S, Chopard B, Masselot A, Droz M (1998) Competing species dynamics: Qualitative advantage versus geography. Eur Phys J B 4:529–531

    ADS  Google Scholar 

  70. Tessone CJ, Toral R, Amengual P, Wio HS, San Miguel M (2004) Neighborhood models of minority opinion spreading. Eur Phys J B 39:535–544

    ADS  Google Scholar 

  71. Galam S (2005) Heterogeneous beliefs, segregation, and extremism in the making of public opinions. Phys Rev E 71:046123

    ADS  Google Scholar 

  72. Sousa AO, Malarz K, Galam S (2005) Reshuffling spins with short range interactions: When sociophysics produces physical results. Int J Mod Phys C 16:1507–1517

    ADS  Google Scholar 

  73. Sznajd‐Weron K, Sznajd J (2000) Opinion evolution in closed community. Int J Mod Phys C 11:1157–1165

    Google Scholar 

  74. Behera L, Schweitzer F (2003) On spatial consensus formation: Is the Sznajd model different from a voter model? cond-mat/0306576

    Google Scholar 

  75. Krupa S, Sznajd‐Weron K (2005) Relaxation under outflow dynamics with random sequential updating. Int J Mod Phys C 16:177–1783

    Google Scholar 

  76. Stauffer D, de Oliveira PMC (2002) Simulation of never changed opinions in Sznajd consensus model using multi-spin coding. cond-mat/0208296

    Google Scholar 

  77. Stauffer D, de Oliveira PMC (2002) Persistence of opinion in the Sznajd consensus model: Computer simulation. Eur Phys J B 30:587–592

    ADS  Google Scholar 

  78. Stauffer D, Sousa AO, Moss de Oliveira S (2000) Generalization to square lattice of Sznajd sociophysics model. Int J Mod Phys C 11:1239–1245

    ADS  Google Scholar 

  79. Bernardes AT, Costa UMS, Araujo AD, Stauffer D (2001) Damage spreading, coarsening dynamics and distribution of political votes in Sznajd model on square lattice. Int J Mod Phys C 12:159–167

    Google Scholar 

  80. Axelrod R (1997) The dissemination of culture: A model with local convergence and global polarization. J Confl Resolut 41:203–226

    Google Scholar 

  81. Castellano C, Marsili M, Vespignani A (2000) Nonequilibrium phase transition in a model for social influence. Phys Rev Lett 85:3536–3539

    ADS  Google Scholar 

  82. DeGroot MH (1974) Reaching a consensus. J Am Stat Assoc 69:118–121

    Google Scholar 

  83. Chatterjee S, Seneta E (1977) Toward consensus: Some convergence theorems on repeated averaging. J Appl Prob 14:89–97

    MathSciNet  Google Scholar 

  84. Deffuant G, Neau D, Amblard F, Weisbuch G (2000) Mixing beliefs among interacting agents. Adv Compl Syst 3:87–98

    Google Scholar 

  85. Krause U (2000) A discrete nonlinear and non‐autonomous model of consensus formation. In: Elaydi S, Ladas G, Popenda J, Rakowski J (eds) Communications in difference equations. Gordon and Breach, Amsterdam, pp 227–236

    Google Scholar 

  86. Hegselmann R, Krause U (2002) Opinion dynamics and bounded confidence models, analysis and simulation. J Artif Soc Soc Simul 5: http://jasss.soc.surrey.ac.uk/5/3/2.html

  87. Fortunato S (2004) Damage spreading and opinion dynamics on scale free networks. cond-mat/0405083

    Google Scholar 

  88. Fortunato S (2004) The Krause–Hegselmann consensus model with discrete opinions. Int J Mod Phys C 15:1021–1029

    ADS  Google Scholar 

  89. Fortunato S (2005) On the consensus threshold for the opinion dynamics of Krause–Hegselmann. Int J Mod Phys C 16:259–270

    ADS  Google Scholar 

  90. Pluchino A, Latora V, Rapisarda A (2005) Compromise and synchronization in opinion dynamics. physics/0510141

    Google Scholar 

  91. Ben-Naim E, Krapivsky PL, Redner S (2003) Bifurcations and patterns in compromise processes. Physica D 183:190

    MathSciNet  ADS  Google Scholar 

  92. Weisbuch G, Deffuant G, Amblard F, Nadal JP (2001) Interacting agents and continuous opinions dynamics. cond-mat/0111494

    Google Scholar 

  93. Bonabeau E, Theraulaz G, Deneubourg JL (1995) Phase diagram of a model of self‐organizing hierarchies. Physica A 217:373–392

    ADS  Google Scholar 

  94. Sousa AO, Stauffer D (2000) Reivestigation of self‐organizing social hierarchies. Int J Mod Phys C 11:1063–1066

    ADS  Google Scholar 

  95. Stauffer D, Sá Martins JS (2003) Asymmetry in hierarchy model of Bonabeau et al. cond-mat/0308437

    Google Scholar 

  96. Schulze C, Stauffer D (2004) Phase diagram in Bonabeau social hierarchy model with individually different abilities. cond-mat/0405697

    Google Scholar 

  97. Malarz K, Stauffer D, Kułakowski K (2005) Bonabeau model on a fully connected graph. physics/0502118

    Google Scholar 

  98. Lacasa L, Luque B (2005) Bonabeau hierarchy models revisited. physics/0511105

    Google Scholar 

  99. Schulze C, Stauffer D, Wichmann S (2008) Birth, survival and death of languages by Monte Carlo simulation. Commun Comput Phys 3:271–294

    MathSciNet  Google Scholar 

Books and Reviews

  1. Castellano C, Fortunato S, Loreto V (2007) Statistical physics of social dynamics. arXiv:0710 3256

    Google Scholar 

  2. Schweitzer F (ed) (2002) Modeling complexity in economic and social systems. World Scientific, Singapore

    Google Scholar 

  3. Weidlich W (1991) Physics and social science – The approach of synergetics. Phys Rep 204:1–163

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The original results in this article were obtained within the projects AVOZ10100520 and MSM0021620845.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Slanina, F. (2009). Social Processes, Physical Models of. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_499

Download citation

Publish with us

Policies and ethics