Skip to main content

Spectral Theory of Dynamical Systems

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Spectral theory of dynamical systems is a study of special unitary representations, called Koopman representations (see theglossary). Invariants of such representations are called spectral invariants of measure‐preserving systems. Together with the entropy, theyconstitute the most important invariants used in the study of measure‐theoretic intrinsic properties and classification problems of dynamicalsystems as well as in applications. Spectral theory was originated by von Neumann, Halmos and Koopman in the 1930s. In this article we will focus onrecent progresses in the spectral theory of finite measure‐preserving dynamical systems.

Introduction

Throughout \( { {\mathbb{A}} } \) denotesa non-compact l.c.s.c. Abelian group (\( { {\mathbb{A}} }\) will be most often \( { {\mathbb{Z}} }\) or \( { {\mathbb{R}} }\)). The assumption of second countability implies that \( { {\mathbb{A}} } \) is metrizable, σ-compact and the space \( { C_0({\mathbb{A}}) } \)is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Spectral decomposition of a unitary representation:

If \( {\cal U}=(U_a)_{a\in{\mathbb{A}}} \) is a continuous unitary representation of a locally compact second countable (l.c.s.c.) Abelian group \( {\mathbb{A}} \) in a separable Hilbert space H then a decomposition \( H=\bigoplus_{i=1}^\infty {\mathbb{A}}(x_i) \) is called spectral if \( \sigma_{x_1}\gg\sigma_{x_2}\gg\ldots \) (such a sequence of measures is also called spectral ); here \( {\mathbb{A}}(x):=\overline{span}\{U_ax\colon a\in{\mathbb{A}}\} \) is called the cyclic space generated by \( x\in H \) and \( \sigma_x \) stands for the spectral measure of x.

Maximal spectral type and the multiplicity function of \( { {\cal U} } \) :

The maximal spectral type \( { \sigma_{{\cal U}} } \) of \( { {\cal U} } \) is the type of \( { \sigma_{x_1} } \) in any spectral decomposition of H; the multiplicity function \( { M_{{\cal U}}\colon \widehat{\mathbb{A}}\to\{1,2,\ldots\}\cup\{+\infty\} } \) is defined \( { \sigma_{{\cal U}} } \)-a.e. and \( { M_{{\cal U}}(\chi)=\sum_{i=1}^\infty 1_{Y_i}(\chi) } \), where \( { Y_1=\widehat{\mathbb{A}} } \) and \( { Y_i=\text{supp}\: {{\text{d}}\sigma_{x_i}}/{{\text{d}}\sigma_{x_1}} } \) for \( { i\geq2 } \).

A representation \( { {\cal U} } \) is said to have simple spectrum if H is reduced to a single cyclic space. The multiplicity is uniform if there is only one essential value of \( { M_{{\cal U}} } \). The essential supremum of \( { M_{{\cal U}} } \) is called the maximal spectral multiplicity. \( { {\cal U} } \) is said to have discrete spectrum if H has an orthonormal base consisting of eigenvectors of \( { {\cal U} } \); \( { {\cal U} } \) has singular ( Haar , absolutely continuous ) spectrum if the maximal spectral type of \( { {\cal U} } \) is singular with respect to (equivalent to, absolutely continuous with respect to) a Haar measure of \( { \widehat{\mathbb{A}} } \).

Koopman representation of a dynamical system \( { {\cal T} } \) :

Let \( {\mathbb{A}} \) be a l.c.s.c. (and not compact) Abelian group and \( {\cal T}\colon a\mapsto T_a \) a representation of \( {\mathbb{A}} \) in the group \( Aut{(X,{\cal B},\mu)} \) of (measure‐preserving) automorphisms of a standard probability Borel space \( {(X,{\cal B},\mu)} \). The Koopman representation \( {\cal U}={\cal U}_{{\cal T}} \) of \( {\cal T} \) in \( L^2{(X,{\cal B},\mu)} \) is defined as the unitary representation \( a\mapsto U_{T_a}\in U( L^2{(X,{\cal B},\mu)}) \), where \( U_{T_a}(f)=f\circ T_a \).

Ergodicity, weak mixing, mild mixing, mixing and rigidity of \( { {\cal T} } \) :

A measure‐preserving \( { {\mathbb{A}} } \)-action \( {\cal T}=(T_a)_{a\in{\mathbb{A}}} \) is called ergodic if \( { \chi_0\equiv1\in\widehat{\mathbb{A}} } \) is a simple eigenvalue of \( { {\cal U}_{{\cal T}} } \). It is weakly mixing if \( { {\cal U}_{{\cal T}} } \) has a continuous spectrum on the subspace \( { L^2_0{(X,{\cal B},\mu)} } \) of zero mean functions. \( { {\cal T} } \) is said to be rigid if there is a sequence \( { (a_n) } \) going to infinity in \( { {\mathbb{A}} } \) such that the sequence \( { (U_{T_{a_n}}) } \) goes to the identity in the strong (or weak) operator topology; \( { {\cal T} } \) is said to be mildly mixing if it has no non-trivial rigid factors. We say that \( { {\cal T} } \) is mixing if the operator equal to zero is the only limit point of \( { \{U_{T_a}|_{L^2_0{(X,{\cal B},\mu)}}\colon a\in{\mathbb{A}}\} } \) in the weak operator topology.

Spectral disjointness:

Two \( { {\mathbb{A}} } \)-actions \( { {\cal S} } \) and \( { {\cal T} } \) are called spectrally disjoint if the maximal spectral types of their Koopman representations \( { {\cal U}_{{\cal T}} } \) and \( { {\cal U}_{{\cal S}} } \) on the corresponding \( { L^2_0 } \)-spaces are mutually singular.

SCS property:

We say that a Borel measure σ on \( \smash{\widehat{\mathbb{A}}} \) satisfies the strong convolution singularity property (SCS property) if, for each \( n\geq1 \), in the disintegration (given by the map \( (\chi_1,\ldots,\chi_n)\mapsto\chi_1\cdot\ldots\cdot\chi_n \)) \( \sigma^{\otimes n}=\int_{\widehat{\mathbb{A}}}\nu_\chi\,d\sigma^{(n)}(\chi) \) the conditional measures \( \nu_\chi \) are atomic with exactly \( n! \) atoms (\( \sigma^{(n)} \) stands for the nth convolution \( \sigma\ast\ldots\ast\sigma \)). An \( {\mathbb{A}} \)-action \( {\cal T} \) satisfies the SCS property if the maximal spectral type of \( {\cal U}_{{\cal T}} \) on \( L^2_0 \) is a type of an SCS measure.

Kolmogorov group property:

An \( { {\mathbb{A}} } \)-action \( { {\cal T} } \) satisfies the Kolmogorov group property if \( { \sigma_{{\cal U}_{{\cal T}}}\ast\sigma_{{\cal U}_{{\cal T}}}\ll\sigma_{{\cal U}_{{\cal T}}} } \).

Weighted operator:

Let T be an ergodic automorphism of \( { {(X,{\cal B},\mu)} } \) and \( { \xi\colon X\to{\mathbb{T}} } \) be a measurable function. The (unitary) operator \( { V=V_{\xi,T} } \) acting on \( { L^2{(X,{\cal B},\mu)} } \) by the formula \( { V_{\xi,T}(f)(x)=\xi(x)f(Tx) } \) is called a  weighted operator .

Induced automorphism :

Assume that T is an automorphism of a standard probability Borel space \( {(X,{\cal B},\mu)} \). Let \( A\in{\cal B} \), \( \mu(A) > 0 \). The induced automorphism \( T_A \) is defined on the conditional space \( (A,{\cal B}_A,\mu_A) \), where \( {\cal B}_A \) is the trace of \( {\cal B} \) on A, \( \mu_A(B)=\mu(B)/\mu(A) \) for \( B\in{\cal B}_A \) and \( T_A(x)=T^{k_A(x)}x \), where \( k_A(x) \) is the smallest \( k \geq 1 \) for which \( T^kx\in A \).

AT property of an automorphism:

An automorphism T of a standard probability Borel space \( { {(X,{\cal B},\mu)} } \) is called approximatively transitive (AT for short) if for every \( { \varepsilon > 0 } \) and every finite set \( { f_1,\ldots,f_n } \) of non-negative \( { L^1 } \)-functions on \( { {(X,{\cal B},\mu)} } \) we can find \( { f\in L^1{(X,{\cal B},\mu)} } \) also non-negative such that \( { \|f_i-\sum_{j}\alpha_{ij}f\circ T^{n_j}\|_{L_1} < \varepsilon } \) for all \( { i=1,\ldots, n } \) (for some \( { \alpha_{ij}\geq 0 } \), \( { n_j\in{\mathbb{N}} } \)).

Cocycles and group extensions:

If T is an ergodic automorphism, G is a l.c.s.c. Abelian group and \( { \varphi\colon X\to G } \) is measurable then the pair \( { (T,\varphi) } \) generates a  cocycle \( { \varphi^{(\cdot)}(\cdot)\colon {\mathbb{Z}}\times X\to G } \), where

$$ \varphi^{(n)}(x)=\left\{\begin{array}{l@{\kern2mm}ll} \varphi(x)+\ldots+\varphi(T^{n-1}x)& \mbox{for}&n > 0\:,\\ 0&\mbox{for}&n=0\:,\\ -(\varphi(T^nx)+\ldots+\varphi(T^{-1}x))&\mbox{for}&n < 0\:.\end{array}\right. $$

(That is \( { (\varphi^{(n)}) } \) is a standard 1-cocycle in the algebraic sense for the \( { {\mathbb{Z}} } \)-action \( { n(f)=f\circ T^n } \) on the group of measurable functions on X with values in G; hence the function \( { \varphi\colon X\to G } \) itself is often called a cocycle.)

Assume additionally that G is compact. Using the cocycle φ we define a  group extension \( T_{\varphi} \) on \( (X\times G,{\cal B}\otimes{\cal B}(G),\mu\otimes \lambda_G) \) (\( \lambda_G \) stands for Haar measure of G), where \( T_{\varphi}(x,g)=(Tx,\varphi(x)+g) \).

Special flow:

Given an ergodic automorphism T on a standard probability Borel space \( { {(X,{\cal B},\mu)} } \) and a positive integrable function \( { f\colon X\to{\mathbb{R}}^+ } \) we put

$$ \begin{aligned} X^f &=\{(x,t)\in X\,\times\,{\mathbb{R}}\colon 0\leq t < f(x)\}\:, \\ {\cal B}^f&={\cal B}\otimes{\cal B}({\mathbb{R}})|_{X^f}\:, \end{aligned} $$

and define \( { \mu^f } \) as normalized \( { \mu\otimes\lambda_{{\mathbb{R}}}|_{X^f} } \). By a  special flow we mean the \( { {\mathbb{R}} } \)-action \( { T^f=(T^f_t)_{t\in{\mathbb{R}}} } \) under which a point \( { (x,s)\in X^f } \) moves vertically with the unit speed, and once it reaches the graph of f, it is identified with \( { (Tx,0) } \).

Markov operator:

A linear operator \( J\colon L^2{(X,{\cal B},\mu)}\to L^2{(Y,{\cal C},\nu)} \) is called Markov if it sends non-negative functions to non-negative functions and \( { J1=J^\ast1=1 } \).

Unitary actions on Fock spaces:

If H is a separable Hilbert space then by \( H^{\odot n} \) we denote the subspace of n‑tensors of \( H^{\otimes n} \) symmetric under all permutations of coordinates, \( n\geq1 \); then the Hilbert space \( F(H):=\bigoplus_{n=0}^\infty H^{\odot n} \) is called a  symmetric Fock space . If \( V\in U(H) \) then \( F(V):=\bigoplus_ {n=0}^\infty V^{\odot n}\in U(F(H)) \) where \( { V^{\odot n} = V^{\otimes n} | H^{\odot n} } \).

Bibliography

  1. Aaronson J (1997) An introduction to infinite ergodic theory, mathematicalsurveys and monographs. Am Math Soc 50:284

    MathSciNet  Google Scholar 

  2. Aaronson J, Nadkarni MG (1987) \( { L^\infty } \) eigenvalues and \( { L^2 } \) spectra of nonsingular transformations. Proc London Math Soc55(3):538–570

    MathSciNet  Google Scholar 

  3. Aaronson J, Weiss B (2000) Remarks on the tightness of cocycles. Coll Math84/85:363–376

    MathSciNet  Google Scholar 

  4. Abdalaoui H (2000) On the spectrum of the powers of Ornstein transformationsErgodic theory and harmonic analysis (Mumbai, 1999). Sankhya Ser. A 62:291–306

    MathSciNet  Google Scholar 

  5. Abdalaoui H (2007) A new class of rank 1 transformations with singularspectrum. Ergodic Theor Dynam Syst 27:1541–1555

    Google Scholar 

  6. Abdalaoui H, Parreau F, Prikhodko A (2006) A new class of Ornsteintransformations with singular spectrum. Ann Inst H Poincaré Probab Statist 42:671–681

    ADS  Google Scholar 

  7. Adams T (1998) Smorodinsky's conjecture on rank one systems. Proc Am Math Soc126:739–744

    Google Scholar 

  8. Ageev ON (1988) Dynamical systems with a Lebesgue component of evenmultiplicity in the spectrum. Mat Sb (NS) 136(178):307–319, (Russian) 430 (1989) Translation inMath. USSR-Sb. 64:305–317

    Google Scholar 

  9. Ageev ON (1999) On ergodic transformations with homogeneousspectrum. J Dynam Control Syst 5:149–152

    MathSciNet  Google Scholar 

  10. Ageev ON (2000) On the spectrum of cartesian powers of classicalautomorphisms. Mat Zametki 68:643–647, (2000) Translation Math. Notes 68:547–551, (Russian)

    MathSciNet  Google Scholar 

  11. Ageev ON (2001) On the multiplicity function of generic group extensions withcontinuous spectrum. Ergodic Theory Dynam Systems 21:321–338

    MathSciNet  Google Scholar 

  12. Ageev ON (2005) The homogeneous spectrum problem in ergodic theory. InventMath 160:417–446

    MathSciNet  ADS  Google Scholar 

  13. Ageev ON (2007) Mixing with staircase multiplicityfunction. preprint

    Google Scholar 

  14. Alexeyev VM (1958) Existence of bounded function of the maximal spectraltype. Vestnik Mosc Univ 5:13-15 and (1982) Ergodic Theory Dynam Syst 2:259–261

    MathSciNet  Google Scholar 

  15. Anosov DV (2003) On Spectral multiplicities in ergodic theory. Institutim. V.A. Steklova, Moscow

    Google Scholar 

  16. Anzai H (1951) Ergodic skew product transformations on the torus. Osaka J Math3:83–99

    MathSciNet  Google Scholar 

  17. Arni N (2005) Spectral and mixing properties of actions of amenablegroups. Electron Res Announc AMS 11:57–63

    Google Scholar 

  18. Arnold VI (1991) Topological and ergodic properties of closed 1-forms withincommensurable periods. Funktsional Anal Prilozhen 25:1–12, (Russian)

    Google Scholar 

  19. Avila A, Forni G (2007) Weak mixing for interval exchange transformations andtranslation flows. Ann Math 165:637–664

    Google Scholar 

  20. Baxter JR (1971) A class of ergodic transformations having simplespectrum. Proc Am Math Soc 27:275–279

    MathSciNet  Google Scholar 

  21. Bourgain J (1993) On the spectral type of Ornstein's class oftransformations. Isr J Math 84:53–63

    MathSciNet  Google Scholar 

  22. Cambanis S, Podgórski K, Weron A (1995) Chaotic behaviour ofinfinitely divisible processes. Studia Math 115:109–127

    Google Scholar 

  23. Chacon RV (1970) Approximation and spectral multiplicity. In: Dold A, EckmannB (eds) Contributions to ergodic theory and probability. Springer, Berlin, pp 18–27

    Google Scholar 

  24. Choe GH Products of operators with singular continuous spectra. In: Operatortheory: operator algebras and applications, Part 2. (Durham, 1988), pp 65–68, Proc Sympos Pure Math, 51, Part 2, Amer Math Soc, Providence,1990

    Google Scholar 

  25. Connes A, Woods E (1985) Approximately transitive flows and ITPFIfactors. Ergod Theory Dynam Syst 5:203–236

    MathSciNet  Google Scholar 

  26. Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic theory. Springer, NewYork

    Google Scholar 

  27. Danilenko AL (2006) Explicit solution of Rokhlin's problem on homogeneousspectrum and applications. Ergod Theory Dyn Syst 26:1467–1490

    MathSciNet  Google Scholar 

  28. Danilenko AL, Lemańczyk M (2005) A class of multipliers for\( { {\cal W}^\perp } \). Isr J Math148:137–168

    Google Scholar 

  29. Danilenko AI, Park KK (2002) Generators and Bernouillian factors for amenableactions and cocycles on their orbits. Ergod Theory Dyn Syst 22:1715–1745

    MathSciNet  Google Scholar 

  30. Derriennic Y, Fr¸aczek K,Lemańczyk M, Parreau F (2007) Ergodic automorphisms whose weak closure of off-diagonal measures consists of ergodic self-joinings. Coll Math 110:81–115

    Google Scholar 

  31. Dooley A, Golodets VY (2002) The spectrum of completely positive entropyactions of countable amenable groups. J Funct Anal 196:1–18

    MathSciNet  Google Scholar 

  32. Dooley A, Quas A (2005) Approximate transitivity for zero-entropysystems. Ergod Theory Dyn Syst 25:443–453

    MathSciNet  Google Scholar 

  33. Downarowicz T, Kwiatkowski J (2000) Spectral isomorphism of Morseflows. Fundam Math 163:193–213

    MathSciNet  Google Scholar 

  34. Downarowicz T, Kwiatkowski J (2002) Weak Cosure Theorem fails for\( { {\mathbb{Z}}^d } \)-actions. Stud Math153:115–125

    MathSciNet  Google Scholar 

  35. Fayad B (2001) Partially mixing and locally rank 1 smooth transformations andflows on the torus \( { {\mathbb{T}}^d, d\ge3 } \). J London Math Soc 64(2):637–654

    MathSciNet  Google Scholar 

  36. Fayad B (2001) Polynomial decay of correlations for a class of smoothflows on the two torus. Bull Soc Math France 129:487–503

    MathSciNet  Google Scholar 

  37. Fayad B (2002) Skew products over translations on \( { T\sp d, d\ge2 } \). Proc Amer Math Soc130:103–109

    MathSciNet  Google Scholar 

  38. Fayad B (2002) Analytic mixing reparametrizations of irrational flows. ErgodTheory Dyn Syst 22:437–468

    MathSciNet  Google Scholar 

  39. Fayad B (2005) Rank one and mixing differentiable flows. Invent Math160:305–340

    MathSciNet  ADS  Google Scholar 

  40. Fayad B (2006) Smooth mixing flows with purely singular spectra. Duke Math J132:371–391

    MathSciNet  Google Scholar 

  41. Fayad B, Katok AB, Windsor A (2001) Mixed spectrum reparameterizations oflinear flows on \( { {\mathbb{T}}^2 } \),dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc Math J 1:521–537

    MathSciNet  Google Scholar 

  42. Fayad B, Windsor A (2007) A dichotomy between discrete andcontinuous spectrum for a class of special flows over rotations. J Mod Dyn 1:107–122

    MathSciNet  Google Scholar 

  43. Feldman J (1976) New K‑automorphisms anda problem of Kakutani. Isr J Math 24:16–38

    Google Scholar 

  44. Ferenczi S (1984) Systèmes localement de rang un. Ann Inst HPoincaré Probab Statist 20:35–51

    MathSciNet  Google Scholar 

  45. Ferenczi S (1985) Systèmes de rang un gauche. Ann Inst H PoincaréProbab Statist 21:177–186

    MathSciNet  Google Scholar 

  46. Ferenczi S (1997) Systems of finite rank. Colloq Math73:35–65

    Google Scholar 

  47. Ferenczi S, Holton C, Zamboni LQ (2005) Joinings of three-interval exchangetransformations. Ergod Theory Dyn Syst 25:483–502

    MathSciNet  Google Scholar 

  48. Ferenczi S, Holton C, Zamboni LQ (2004) Structure of three-interval exchangetransformations III: ergodic and spectral properties. J Anal Math 93:103–138

    MathSciNet  Google Scholar 

  49. Ferenczi S, Lemańczyk M (1991) Rank is not a spectralinvariant. Stud Math 98:227–230

    Google Scholar 

  50. Filipowicz I (1997) Product \( { {\mathbb Z}^d } \)-actions on a Lebesgue space and their applications. Stud Math122:289–298

    MathSciNet  Google Scholar 

  51. Foiaş C, Stratila S (1968) Ensembles de Kronecker dans la théorieergodique. CR Acad Sci Paris, Ser A-B 267:A166–A168

    Google Scholar 

  52. Fr¸aczek K (1997) Ona function that realizes the maximal spectral type. Stud Math 124:1–7

    Google Scholar 

  53. Fr¸aczek K (2000) Circleextensions of \( { Z\sp d } \)-rotations on thed‑dimensional torus. J London Math Soc 61(2):139–162

    Google Scholar 

  54. Fr¸aczek K, Lemańczyk M(2004) A class of special flows over irrational rotations which is disjoint from mixing flows. Ergod Theory Dyn Syst24:1083–1095

    Google Scholar 

  55. Fr¸aczek K, Lemańczyk M(2003) On symmetric logarithm and some old examples in smooth ergodic theory. Fund Math 180:241–255

    Google Scholar 

  56. Fr¸aczek K, Lemańczyk M(2005) On disjointness properties of some smooth flows. Fund Math 185:117–142

    Google Scholar 

  57. Fr¸aczek K, Lemańczyk M(2006) On mild mixing of special flows over irrational rotations under piecewise smooth functions. Ergod Theory Dyn Syst26:719–738

    Google Scholar 

  58. Fr¸aczek K, Lemańczyk M,Lesigne E (2007) Mild mixing property for special flows under piecewise constant functions. Disc Contin Dyn Syst19:691–710

    Google Scholar 

  59. Friedman NA, Ornstein DS (1973) Ergodic transformations induce mixingtransformations. Adv Math 10:147–163

    MathSciNet  Google Scholar 

  60. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, anda problem of Diophantine approximation. Math Syst Theory 1:1–49

    MathSciNet  Google Scholar 

  61. Furstenberg H, Weiss B (1978) The finite multipliers of infinite ergodictransformations. Lect Notes Math 668:127–132

    MathSciNet  Google Scholar 

  62. Furstenberg H (1981) Recurrence in ergodic theory and combinatorial numbertheory. Princeton University Press, Princeton

    Google Scholar 

  63. Glasner E (1994) On the class of multipliers for \( { {\cal W}^\perp } \). Ergod Theory Dyn Syst14:129–140

    MathSciNet  Google Scholar 

  64. Glasner E (2003) Ergodic theory via joinings. Math Surv Monogr, AMS,Providence, RI 101:384

    MathSciNet  Google Scholar 

  65. Glasner E, Weiss B (1989) Processes disjoint from weak mixing. Trans Amer MathSoc 316:689–703

    MathSciNet  Google Scholar 

  66. Goodson GR (1999) A survey of recent results in the spectral theory ofergodic dynamical systems. J Dyn Control Syst 5:173–226

    MathSciNet  Google Scholar 

  67. Goodson GR, Kwiatkowski J, Lemańczyk M, Liardet P (1992) On themultiplicity function of ergodic group extensions of rotations. Stud Math 102:157–174

    Google Scholar 

  68. Gromov AL (1991) Spectral classification of some types of unitary weightedshift operators. Algebra Anal 3:62–87, (Russian) (1992) Translation in St. Petersburg Math J 3:997–1021

    MathSciNet  Google Scholar 

  69. Guenais M (1998) Une majoration de la multiplicité spectraled'opérateurs associés à des cocycles réguliers. Isr J Math 105:263–284

    MathSciNet  Google Scholar 

  70. Guenais M (1999) Morse cocycles and simple Lebesgue spectrum. Ergod Theory DynSyst 19:437–446

    MathSciNet  Google Scholar 

  71. Guenais M, Parreau F (2005) Valeurs propres de transformations liées auxrotations irrationnelles et aux fonctions en escalier. (in press)

    Google Scholar 

  72. Hahn F, Parry W (1968) Some characteristic properties of dynamical systemswith quasi-discrete spectra. Math Syst Theory 2:179–190

    MathSciNet  Google Scholar 

  73. Hasselblatt B, Katok AB (2002) Principal structures. In: Handbook of dynamicalsystems, vol 1A. North-Holland, Amsterdam, pp 1–203

    Google Scholar 

  74. Helson H (1986) Cocycles on the circle. J Oper Theory 16:189–199

    Google Scholar 

  75. Helson H, Parry W (1978) Cocycles and spectra. Arkiv Math 16:195–206

    Google Scholar 

  76. Herman M (1979) Sur la conjugaison différentiable desdifféomorphismes du cercle à des rotations. Publ Math IHES 49:5–234

    Google Scholar 

  77. Host B (1991) Mixing of all orders and pairwise independent joinings ofsystems with singular spectrum. Isr J Math 76:289–298

    Google Scholar 

  78. Host B, Méla F, Parreau F (1991) Non-singular transformations andspectral anaysis of measures. Bull Soc Math France 119:33–90

    Google Scholar 

  79. Iwanik A (1991) The problem of \( { L\sp p } \)-simple spectrum for ergodic groupautomorphisms. Bull Soc Math France 119:91–96

    Google Scholar 

  80. Iwanik A (1992) Positive entropy implies infinite \( { L^p } \)‐multiplicity for \( { p > 1 } \). Ergod Theory Rel Top (Güstrow 1990)III:124–127. Lecture Notes in Math, vol 1514. Springer, Berlin

    Google Scholar 

  81. Iwanik A (1997) Anzai skew products with Lebesgue component of infinitemultiplicity. Bull London Math Soc 29:195–199

    MathSciNet  Google Scholar 

  82. Iwanik A, Lemańczyk M, Rudolph D (1993) Absolutely continuous cocyclesover irrational rotations. Isr J Math 83:73–95

    Google Scholar 

  83. Iwanik A, Lemańczyk M, de Sam Lazaro J, de la Rue T (1997) Quelquesremarques sur les facteurs des systèmes dynamiques gaussiens. Stud Math 125:247–254

    Google Scholar 

  84. Iwanik A, Lemańczyk M, Mauduit C (1999) Piecewise absolutely continuouscocycles over irrational rotations. J London Math Soc 59(2):171–187

    Google Scholar 

  85. Iwanik A, de Sam Lazaro J (1991) Sur la multiplicité \( { L^p } \) d'un automorphisme gaussien. CR Acad Sci ParisSer I 312:875–876

    Google Scholar 

  86. Janicki A, Weron A (1994) Simulation and chaotic behavior ofα-stable stochastic processes. Monographs and Textbooks in Pure and Applied Mathematics, vol 178. Marcel Dekker, New York,pp 355

    Google Scholar 

  87. del Junco A (1976) Transformations with discrete spectrum are stackingtransformations. Canad J Math 28:836–839

    MathSciNet  Google Scholar 

  88. del Junco A (1977) A transformation with simple spectrum which isnot of rank one. Canad J Math 29:655–663

    MathSciNet  Google Scholar 

  89. del Junco A (1981) Disjointness of measure‐preservingtransformations, minimal self-joinings and category. Prog Math 10:81–89

    Google Scholar 

  90. del Junco A, Lemańczyk M (1992) Generic spectral properties ofmeasure‐preserving maps and applications. Proc Amer Math Soc 115:725–736

    Google Scholar 

  91. del Junco A, Lemańczyk M (1999) Simple systems are disjoint with Gaussiansystems. Stud Math 133:249–256

    Google Scholar 

  92. del Junco A, Lemańczyk M (2005) Joinings of distally simple systems. (inpress)

    Google Scholar 

  93. del Junco A, Rudolph D (1987) On ergodic actions whose self-joinings aregraphs. Ergod Theory Dyn Syst 7:531–557

    Google Scholar 

  94. Kachurovskii AG (1990) A property of operators generated by ergodicautomorphisms. Optimizatsiya 47(64):122–125, (Russian)

    MathSciNet  Google Scholar 

  95. Kalikow S (1984) Two fold mixing implies three fold mixing for rank onetranformations. Ergod Theory Dyn Syst 4:237–259

    MathSciNet  Google Scholar 

  96. Kamae T Spectral properties of automata generating sequences. (inpress)

    Google Scholar 

  97. Kamiński B (1981) The theory of invariant partitions for \( { {\mathbb{Z}}^d } \)-actions. Bull Acad Polon Sci Ser SciMath 29:349–362

    Google Scholar 

  98. Katok AB Constructions in ergodic theory. (inpress)

    Google Scholar 

  99. Katok AB (1977) Monotone equivalence in ergodic theory. Izv Akad Nauk SSSR SerMat 41:104–157, (Russian)

    MathSciNet  Google Scholar 

  100. Katok AB (1980) Interval exchange transformations and some special flows arenot mixing. Isr J Math 35:301–310

    MathSciNet  Google Scholar 

  101. Katok AB (2001) Cocycles, cohomology and combinatorial constructions inergodic theory. In: Robinson Jr. EA (ed) Proc Sympos Pure Math 69, Smooth ergodic theory and its applications, Seattle, 1999. Amer Math Soc,Providence, pp 107–173

    Google Scholar 

  102. Katok AB (2003) Combinatorial constructions in ergodic theory anddynamics. In: University Lecture Series 30. Amer Math Soc, Providence

    Google Scholar 

  103. Katok AB, Lemańczyk M (2007) Some new cases of realization of spectralmultiplicity function for ergodic transformations. (in press)

    Google Scholar 

  104. Katok AB, Stepin AM (1967) Approximations in ergodic theory. Uspekhi MatNauk 22(137):81–106, (Russian)

    MathSciNet  Google Scholar 

  105. Katok AB, Thouvenot J-P (2006) Spectral Properties and CombinatorialConstructions in Ergodic Theory. In: Handbook of dynamical systems, vol 1B. Elsevier, Amsterdam, pp 649–743

    Google Scholar 

  106. Katok AB, Zemlyakov AN (1975) Topological transitivity of billiards inpolygons. Mat Zametki 18:291–300, (Russian)

    MathSciNet  Google Scholar 

  107. Keane M (1968) Generalized Morse sequences. Z Wahr Verw Geb10:335–353

    MathSciNet  Google Scholar 

  108. Keane M (1975) Interval exchange transformations. Math Z141:25–31

    MathSciNet  Google Scholar 

  109. Khanin KM, Sinai YG (1992) Mixing of some classes of special flows overrotations of the circle. Funct Anal Appl 26:155–169

    MathSciNet  Google Scholar 

  110. King JL (1986) The commutant is the weak closure of the powers, for rank-1transformations. Ergod Theory Dyn Syst 6:363–384

    Google Scholar 

  111. King JL (1988) Joining-rank and the structure of finite rank rank mixingtransformations. J Anal Math 51:182–227

    ADS  Google Scholar 

  112. King JL (2001) Flat stacks, joining‐closure and genericity. (inpress)

    Google Scholar 

  113. Klemes I (1996) The spectral type of the staircase transformation. TohokuMath J 48:247–248

    MathSciNet  Google Scholar 

  114. Klemes I, Reinhold K (1997) Rank one transformations with singular spectraltype. Isr J Math 98:1–14

    MathSciNet  Google Scholar 

  115. Kocergin AV (1972) On the absence of mixing in special flows over therotation of a circle and in flows on a two‐dimensional torus. Dokl Akad Nauk SSSR 205:949–952,(Russian)

    MathSciNet  Google Scholar 

  116. Kochergin AV (1975) Mixing in special flows over rearrangment of segmentsand in smooth flows on surfaces. Math USSR Acad Sci 25:441–469

    Google Scholar 

  117. Kochergin AV (1976) Non‐degenerate saddles and absence of mixing. MatZametky 19:453–468, (Russian)

    Google Scholar 

  118. Kochergin AV (1976) On the homology of function over dynamical systems. DoklAkad Nauk SSSR 231:795–798

    MathSciNet  Google Scholar 

  119. Kochergin AV (2002) A mixing special flow over a rotation of thecircle with an almost Lipschitz function. Sb Math 193:359–385

    Google Scholar 

  120. Kochergin AV (2004) Nondegenerate fixed points and mixing in flows ona two‐dimensional torus II. Math Sb 195:15–46, (Russian)

    MathSciNet  Google Scholar 

  121. Koopman BO (1931) Hamiltonian systems and transformations in Hilbertspace. Proc Nat Acad Sci USA 17:315–318

    ADS  Google Scholar 

  122. Kuipers L, Niederreiter H (1974) Uniform distribution of sequences. Wiley,London, pp 407

    Google Scholar 

  123. Kushnirenko AG (1974) Spectral properties of some dynamical systems withpolynomial divergence of orbits. Vestnik Moskovskogo Univ 1–3:101–108

    Google Scholar 

  124. Kwiatkowski J (1981) Spectral isomorphism of Morse dynamical systems BullAcad Polon Sci Ser Sci Math 29:105–114

    MathSciNet  Google Scholar 

  125. Kwiatkowski Jr. J, Lemańczyk M (1995) On the multiplicity function ofergodic group extensions II. Stud Math 116:207–215

    Google Scholar 

  126. Lemańczyk M (1988) Toeplitz \( { Z_{2} } \)–extensions. Ann Inst H Poincaré24:1–43

    Google Scholar 

  127. Lemańczyk M (1996) Introduction to ergodic theory from the point ofview of the spectral theory. In: Lecture Notes of the tenth KAIST mathematics workshop, Taejon, 1996, pp 1–153

    Google Scholar 

  128. Lemańczyk M (2000) Sur l'absence de mélange pour des flotsspéciaux au dessus d'une rotation irrationnelle. Coll Math 84/85:29–41

    Google Scholar 

  129. Lemańczyk M, Lesigne E (2001) Ergodicity of Rokhlincocycles. J Anal Math 85:43–86

    Google Scholar 

  130. Lemańczyk M, Mauduit C (1994) Ergodicity of a class of cocyclesover irrational rotations. J London Math Soc 49:124–132

    Google Scholar 

  131. Lemańczyk M, Mentzen MK, Nakada H (2003) Semisimple extensions ofirrational rotations. Stud Math 156:31–57

    Google Scholar 

  132. Lemańczyk M, Parreau F (2003) Rokhlin extensions and liftingdisjointness. Ergod Theory Dyn Syst 23:1525–1550

    Google Scholar 

  133. Lemańczyk M, Parreau F (2004) Lifting mixing properties by Rokhlincocycles. (in press)

    Google Scholar 

  134. Lemańczyk M, Parreau F (2007) Special flows over irrational rotationwith simple convolution property. (in press)

    Google Scholar 

  135. Lemańczyk M, Parreau F, Roy E (2007) Systems with simple convolutions,distal simplicity and disjointness with infinitely divisible systems. (in press)

    Google Scholar 

  136. Lemańczyk M, Parreau F, Thouvenot J-P (2000) Gaussian automorphismswhose ergodic self–joinings are Gaussian. Fundam Math 164:253–293

    Google Scholar 

  137. Lemańczyk M, de Sam Lazaro J (1997) Spectral analysis of certaincompact factors for Gaussian dynamical systems. Isr J Math 98:307–328

    Google Scholar 

  138. Lemańczyk M, Sikorski A (1987) A class of not local rank oneautomorphisms arising from continuous substitutions. Prob Theory Rel Fields 76:421–428

    Google Scholar 

  139. Lemańczyk M, Wasieczko M (2006) A new proof of Alexeyev'stheorem. (in press)

    Google Scholar 

  140. Lemańczyk M, Wysokińska M (2007) On analytic flows on the toruswhich are disjoint from systems of probabilistic origin. Fundam Math 195:97–124

    Google Scholar 

  141. Leonov VP (1960) The use of the characteristic functional andsemi–invariants in the ergodic theory of stationary processes. Dokl Akad Nauk SSSR 133:523–526, (1960) Sov Math1:878–881

    Google Scholar 

  142. Maruyama G (1970) Infinitely divisible processes. Theory Prob Appl15(1):1–22

    Google Scholar 

  143. Masur H (1982) Interval exchange transformations and measuredfoliations. Ann Math 115:169–200

    MathSciNet  Google Scholar 

  144. Mathew J, Nadkarni MG (1984) Measure‐preserving transformation whosespectrum has Lebesgue component of multiplicity two. Bull London Math Soc 16:402–406

    MathSciNet  Google Scholar 

  145. Medina H (1994) Spectral types of unitary operators arising from irrationalrotations on the circle group. Michigan Math J 41:39–49

    MathSciNet  Google Scholar 

  146. Mentzen MK (1988) Some examples of automorphisms with rank r and simple spectrum. Bull Pol Acad Sci 7–8:417–424

    Google Scholar 

  147. Nadkarni MG (1998) Spectral theory of dynamical systems. Hindustan BookAgency, New Delhi

    Google Scholar 

  148. von Neumann J (1932) Zur Operatorenmethode in der Klassichen Mechanik. AnnMath 33:587–642

    Google Scholar 

  149. Newton D (1966) On Gaussian processes with simple spectrum. ZWahrscheinlichkeitstheorie Verw Geb 5:207–209

    Google Scholar 

  150. Newton D, Parry W (1966) On a factor automorphism of a normaldynamical system. Ann Math Statist 37:1528–1533

    MathSciNet  Google Scholar 

  151. Ornstein D (1970) On the root problem in ergodic theory. In: Proc. 6thBerkeley Symp Math Stats Prob, University California Press, Berkeley, 1970, pp 348–356

    Google Scholar 

  152. Ornstein D, Rudolph D, Weiss B (1982) Equivalence of measure preservingtransformations. Mem Amer Math Soc 37(262):116

    MathSciNet  Google Scholar 

  153. Ornstein D, Weiss B (1987) Entropy and isomorphism theorems for actions ofamenable groups. J Anal Math 48:1–141

    MathSciNet  Google Scholar 

  154. Parreau F (2000) On the Foiaş and Stratila theorem. In: Proceedings ofthe conference on Ergodic Theory, Toruń, 2000

    Google Scholar 

  155. Parreau F, Roy E (2007) Poissson suspensions with a minimal set odself-joinings. (in press)

    Google Scholar 

  156. Parry W (1981) Topics in ergodic theory. Cambridge Tracts in Mathematics,75. Cambridge University Press, Cambridge-New York

    Google Scholar 

  157. Parry W (1970) Spectral analysis of G‑extensions of dynamical systems. Topology 9:217–224

    MathSciNet  Google Scholar 

  158. Petersen K (1983) Ergodic theory. Cambridge University Press,Cambridge

    Google Scholar 

  159. Prikhodko AA, Ryzhikov VV (2000) Disjointness of the convolutions forChacon's automorphism. Dedicated to the memory of Anzelm Iwanik. Colloq Math 84/85:67–74

    MathSciNet  Google Scholar 

  160. Queffelec M (1988) Substitution dynamical systems – spectralanalysis. In: Lecture Notes in Math 1294. Springer, Berlin, pp 240

    Google Scholar 

  161. Ratner M (1978) Horocycle flows are loosely Bernoulli. Isr JMath. 31:122–132

    MathSciNet  Google Scholar 

  162. Ratner M (1983) Horocycle flows, joinings and rigidity of products. Ann Math118:277–313

    MathSciNet  Google Scholar 

  163. Rauzy G (1979) Echanges d'intervalles et transformations induites. ActaArith 34:315–328

    MathSciNet  Google Scholar 

  164. Robinson EA Jr (1983) Ergodic measure preserving transformations witharbitrary finite spectral multiplicities. Invent Math 72:299–314

    MathSciNet  ADS  Google Scholar 

  165. Robinson EA Jr (1986) Transformations with highly nonhomogeneous spectrum offinite multiplicity. Isr J Math 56:75–88

    Google Scholar 

  166. Robinson EA Jr (1988) Nonabelian extensions have nonsimple spectrum. ComposMath 65:155–170

    Google Scholar 

  167. Robinson EA Jr (1992) A general condition for lifting theorems. TransAmer Math Soc 330:725–755

    MathSciNet  Google Scholar 

  168. Rosiński J, Zak T (1996) Simple condition for mixing of infinitelydivisible processes. Stoch Process Appl 61:277–288

    Google Scholar 

  169. Rosiński J, Zak T (1997) The equivalence of ergodicity and weak mixingfor infinitely divisible processes. J Theor Probab 10:73–86

    Google Scholar 

  170. Roy E (2005) Mesures de Poisson, infinie divisibilité etpropriétés ergodiques. In: Thèse de doctorat de l'Université Paris 6

    Google Scholar 

  171. Roy E (2007) Ergodic properties of Poissonian ID processes. Ann Probab35:551–576

    MathSciNet  Google Scholar 

  172. Royden HL (1968) Real analysis. McMillan, NewYork

    Google Scholar 

  173. Rudin W (1962) Fourier analysis on groups. In: Interscience Tracts in Pureand Applied Mathematics, No. 12 Interscience Publishers. Wiley, New York, London, pp 285

    Google Scholar 

  174. Rudolph DJ (1979) An example of a measure‐preserving map withminimal self-joinings and applications. J Anal Math 35:97–122

    MathSciNet  Google Scholar 

  175. Rudolph D (1985) k‑fold mixing lifts toweakly mixing isometric extensions. Ergod Theor Dyn Syst 5:445–447

    MathSciNet  Google Scholar 

  176. Rudolph D (1986) \( { {\mathbb{Z}}^n } \) and \( { {\mathbb{R}}^n } \) cocycle extension and complementary algebras. Ergod Theor Dyn Syst6:583–599

    MathSciNet  Google Scholar 

  177. Rudolph D (1990) Fundamentals of measurable dynamics. Oxford Sci Publ,pp 169

    Google Scholar 

  178. Rudolph D (2004) Pointwise and \( { L^1 } \) mixing relative to a sub-sigmaalgebra. Illinois J Math 48:505–517

    MathSciNet  Google Scholar 

  179. Rudolph D, Weiss B (2000) Entropy and mixing for amenable group actions. AnnMath 151(2):1119–1150

    MathSciNet  Google Scholar 

  180. de la Rue T (1996) Systèmes dynamiques gaussiens d'entropie nulle, l\( { \hat{\mbox{a}} } \)chement et non l\( { \hat{\mbox{a}} } \)chement Bernoulli. Ergod Theor Dyn Syst 16:379–404

    Google Scholar 

  181. de la Rue T (1998) Rang des systèmes dynamiques gaussiens. Isr J Math104:261–283

    Google Scholar 

  182. de la Rue T (1998) L'ergodicité induit un type spectral maximaléquivalent à la mesure de Lebesgue. Ann Inst H Poincaré Probab Statist 34:249–263

    Google Scholar 

  183. de la Rue T (1998) L'induction ne donne pas toutes les mesuresspectrales. Ergod Theor Dyn Syst 18:1447–1466

    Google Scholar 

  184. de la Rue T (2004) An extension which is relatively twofold mixing but notthreefold mixing. Colloq Math 101:271–277

    MathSciNet  Google Scholar 

  185. Ryzhikov VV (1991) Joinings of dynamical systems. Approximations andmixing. Uspekhi Mat Nauk 46 5(281):177–178 (in Russian); Math Surv 46(5)199–200

    Google Scholar 

  186. Ryzhikov VV (1992) Mixing, rank and minimal self-joining of actions withinvariant measure. Math Sb 183:133–160, (Russian)

    Google Scholar 

  187. Ryzhikov VV (1994) The absence of mixing in special flows overrearrangements of segments. Math Zametki 55:146–149, (Russian)

    MathSciNet  Google Scholar 

  188. Ryzhikov VV (1999) Transformations having homogeneous spectra. J DynControl Syst 5:145–148

    MathSciNet  Google Scholar 

  189. Ryzhikov VV (2000) The Rokhlin problem on multiple mixing in the class ofactions of positive local rank. Funkt. Anal Prilozhen 34:90–93, (Russian)

    MathSciNet  Google Scholar 

  190. Ryzhikov VV, Thouvenot J-P (2006) Disjointness, divisibility, andquasi‐simplicity of measure‐preserving actions. Funkt Anal Prilozhen 40:85–89, (Russian)

    MathSciNet  Google Scholar 

  191. Ryzhikov VV (2007) Weak limits of powers, simple spectrum symmetric productsand mixing rank one constructions. Math Sb 198:137–159

    MathSciNet  Google Scholar 

  192. Sato K-I (1999) Lévy Processes and infinitely divisibledistributions. In: Cambridge Studies in Advanced Mathematics, vol 68. Cambridge University Press, Cambridge, pp 486

    Google Scholar 

  193. Schmidt K (1977) Cocycles of Ergodic Transformation Groups. In: LectureNotes in Math. 1. Mac Millan, India

    Google Scholar 

  194. Schmidt K (2002) Dispersing cocycles and mixing flows under functions. FundMath 173:191–199

    MathSciNet  Google Scholar 

  195. Schmidt K, Walters P (1982) Mildly mixing actions of locally compactgroups. Proc London Math Soc 45(3)506–518

    MathSciNet  Google Scholar 

  196. Sinai YG (1994) Topics in ergodic theory. Princeton University Press,Princeton

    Google Scholar 

  197. Shklover M (1967) Classical dynamical systems on the torus with continuousspectrum. Izv Vys Ucebn Zaved Matematika 10:(65)113–124, (Russian)

    Google Scholar 

  198. Smorodinsky M, Thouvenot J-P (1979) Bernoulli factors that spana transformation. Isr J Math 32:39–43

    MathSciNet  Google Scholar 

  199. Stepin AM (1986) Spectral properties of generic dynamical systems. Izv AkadNauk SSSR Ser Mat 50:801–834, (Russian)

    MathSciNet  Google Scholar 

  200. Tikhonov SV (2002) On a relation between the metric and spectralproperties of \( { {\mathbb{Z}}^d } \)-actions. Fundam Prikl Mat 8:1179–1192

    Google Scholar 

  201. Thouvenot J-P (1995) Some properties and applications of joinings in ergodictheory. London Math Soc Lect Note Ser 205:207–235

    MathSciNet  Google Scholar 

  202. Thouvenot J-P (2000) Les systèmes simples sont disjoints de ceux quisont infiniment divisibles et plongeables dans un flot. Coll Math 84/85:481–483

    MathSciNet  Google Scholar 

  203. Ulcigrai C (2007) Mixing of asymmetric logarithmic suspension flows overinterval exchange transformations. Ergod Theor Dyn Syst 27:991–1035

    MathSciNet  Google Scholar 

  204. Walters P (1982) An Introduction to Ergodic Theory. In: Graduate Texts inMathematics, vol 79. Springer, Berlin, pp 250

    Google Scholar 

  205. Wysokińska M (2004) A class of real cocycles over an irrationalrotation for which Rokhlin cocycle extensions have Lebesgue component in the spectrum. Topol Meth Nonlinear Anal24:387–407

    Google Scholar 

  206. Wysokińska M (2007) Ergodic properties of skew products and analyticspecial flows over rotations. In: Ph D thesis. Toruń, 2007.

    Google Scholar 

  207. Veech WA (1978) Interval exchange transformations. J Anal Math33:222–272

    MathSciNet  Google Scholar 

  208. Veech WA (1982) A criterion for a process to be prime. MonatshefteMath 94:335–341

    MathSciNet  Google Scholar 

  209. Veech WA (1982) Gauss measures for transformations on the space of intervalexchange maps. Ann Math 115(2):201–242

    MathSciNet  Google Scholar 

  210. Veech WA (1984) The metric theory of interval exchange transformations, IGeneric spectral properties. Amer J Math 106:1331–1359

    MathSciNet  Google Scholar 

  211. Vershik AM (1962) On (1962) the theory of normal dynamic systems. Math SovDokl 144:625–628

    Google Scholar 

  212. Vershik AM (1962) Spectral and metric isomorphism of some normal dynamicalsystems. Math Sov Dokl 144:693–696

    Google Scholar 

  213. Yassawi R (2003) Multiple mixing and local rank group actions. Ergod TheorDyn Syst 23:1275–1304

    MathSciNet  Google Scholar 

  214. Zeitz P (1993) The centralizer of a rank one flow. Isr J Math84:129–145

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Research supported by the EU Program Transfer of Knowledge “Operator Theory Methods for Differential Equations” TODEQ and thePolish Ministry of Science and High Education.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Lemańczyk, M. (2009). Spectral Theory of Dynamical Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_511

Download citation

Publish with us

Policies and ethics