Skip to main content

Spin Dynamics in Disordered Solids

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The main specifics of the theory of spin dynamics in disordered solids result from the fact that calculation of observable values muststart from the solution of the equation of motion, and then they should be averaged over random distribution of spins in the sample. Nominallyany problem in statistical physics looks analogous, but the content of existing text books contains much more simple bypass methods to achievethe results. An important bypass class, determined in the preceding century, consists of problems that are equivalent to the motion of weak (orseldom) interacting (quasi)particles in translational invariant media. The basis of this solution is formed by the Boltzmann equation (devisedin the 19th century) and by methods of deriving hydrodynamic equations based on this foundation [1]. Other important advancements in physical kinetics are connected with the invention ofa projection technique byNakajima–Zwanzig for deriving...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Averaging:

Two kinds of averaging are necessary for any observable \( { \hat Q } \): a standard quantum mechanical one \( { Q=\langle \hat Q \rangle = \operatorname{Tr}(\hat{Q}\rho) } \), where ρ is the density matrix, and consequent averaging over all possible positions of particles in disordered media \( { \langle Q\rangle_c = \langle\langle\hat Q\rangle\rangle_c } \).

Continuum media approximation j:

Positions of particles forming the disordered solids can be considered as a subset (impurity sites) of crystal lattice sites, randomly distributed on the lattice with a small probability \( { c\ll 1 } \) to find a given site occupied. Many important results can be received in continuum media approximation (CMA) when prime cell volume \( { \Omega_\mathrm{c} \to 0 } \) together with impurity concentration \( { c\to 0 } \) at a fixed value of impurity density \( { n=c/\Omega_\mathrm{c} } \).

Disordered solids :

Statically disordered media are considered, this means that constituent particles (atoms, ions and so on) do not participate in significant translational motions during the relaxation time under discussion, and therefore their positions are fixed (frozen) in the main approximation.

High-temperature approximation :

High-temperature approximation (HTA) in spin dynamics consists of using the simplest density matrix \( \rho=1/\operatorname{Tr}1 \), corresponding to the limit of infinite temperature T of canonical Gibbs distribution \( \rho_\mathrm{G}=\exp(-H/T)/ \operatorname{Tr}\exp(-H/T) \); here H is the Hamiltonian. Spin dynamics remains nontrivial and rich in this limit. Sometimes HTA means application of \( \rho=(1-H/T)/\operatorname{Tr}1 \).

Local field :

See “Secular part of dipole–dipole interactions”.

Local frequency :

The frequency \( { \omega_\text{loc}=\gamma H_\text{loc} } \) of rotation of the spin in local field \( { H_{\text{loc}} } \).

Secular part of dipole–dipole interactions :

As a rule any spin is considered as subjected to an external static magnetic field \( { \mathbf{H}_0=H_0\mathbf{n}_z } \) (directed along the z‑axis) and local field, produced by dipole magnetic moments of surrounding spins. The Hamiltonian of the dipole–dipole interaction of spins \( { \mathbf{I}_i } \) and \( { \mathbf{I}_j } \) is of the form \( { H_d^{(0)}(i,j) = r_{ij}^{-3}((\mathbf{m}_i\mathbf{m}_j) - 3(\mathbf{n}_{ij}\mathbf{m}_i)(3\mathbf{n}_{ij}\mathbf{m}_j)) } \), where \( { \mathbf{r}_{ij} = \mathbf{n}_{ij}r_{ij} = \mathbf{r}_i-\mathbf{r}_j } \), and \( { \mathbf{r}_i } \) is the position of spin “i” having magnetic moment \( { \mathbf{m}_i = \hbar\gamma_iI_i } \). If \( { H_0\gg H_\text{loc} } \), where H \( { _{\text{loc}} } \) is the mean square field produced at any spin by surrounding spins (local field), then the Hamiltonian \( { H_d^{(0)}(i,j) } \) can be substituted by the so‐called secular dipole–dipole Hamiltonian \( { H_{\!d}(i,j) \!=\! \smash{\frac{1}{2r_{ij}^3}} (1\!-\!3(\mathbf{n}_{ij}\mathbf{n}_z)^2) (\mathbf{m}_i\mathbf{m}_j\!-\!3(\mathbf{m}_i\mathbf{n}_z) (\mathbf{m}_j\mathbf{n}_z)) } \). The accuracy of the substitution is not less than \( { \sim H_\text{loc}/H_0 } \).

Spin dynamics :

Spin dynamics is considered as a time evolution of correlation functions directly connected with measurable quantities of paramagnetic samples.

Units:

As a rule \( { \hslash=1 } \) is supposed. Part of the equations contains ℏ written explicitly.

Bibliography

  1. Balesku R (1975) Equlibrium and Non-Equilibrium StatisticalMechanics. Wiley, New York

    Google Scholar 

  2. Abragam A, Goldman M (1982) Nuclear Magnetism: Order andDisorder. Clarendon Press, Oxford

    Google Scholar 

  3. Forster T (1949) Z Naturforsch (A) 4:321

    ADS  Google Scholar 

  4. Anderson PW (1951) Phys Rev 82:342

    Google Scholar 

  5. Dzheparov FS, Lundin AA (1978) Sov Phys JETP48:514

    ADS  Google Scholar 

  6. Dzheparov FS, Lundin AA, Khazanovich TN (1987) Sov Phys JETP65:314

    Google Scholar 

  7. Feldman EB, Lacelle S (1996) J Chem Phys104:2000

    ADS  Google Scholar 

  8. Abov YG, Bulgakov MI, Borovlev SP, Gul'ko AD,Garochkin VM, Dzheparov FS, Stepanov SV, Trostin SS, Shestopal VE (1991) Sov Phys JETP 72:534

    Google Scholar 

  9. Dzheparov FS (1999) JETP 89:753

    ADS  Google Scholar 

  10. Dzheparov FS (1991) Sov Phys JETP 72:546

    Google Scholar 

  11. Abov YG, Gulko AD, Dzheparov FS, Stepanov SV,Trostin SS (1995) Phys Part Nucl 26:692

    Google Scholar 

  12. Feynman RP (1972) Statistical mechanics. W.A. Benjamin,Massachusetts

    Google Scholar 

  13. Dzheparov FS, L'vov DV, Shestopal VE (1998) JETP87:1179

    ADS  Google Scholar 

  14. Rieger PT, Palese SP, Miller RJD (1997) Chem Phys221:85

    ADS  Google Scholar 

  15. Ziman JM (1979) Models of Disorder: the Theoretical Physics ofHomogeneously Disordered Systems. Cambridge University Press, Cambridge

    Google Scholar 

  16. Dzheparov FS, Smelov VS, Shestopal VE (1980) JETP Lett32:47

    ADS  Google Scholar 

  17. Dzheparov FS, Shestopal VE (1993) Theor Mat Phys94:496

    MathSciNet  Google Scholar 

  18. Dzheparov FS, L'vov DV, Shestopal VE (2007) J Supercond NovMagn 20(2):175

    Google Scholar 

  19. Dzheparov FS (2005) JETP Lett 82(8):521

    Google Scholar 

  20. Dzheparov FS, Gul'ko A, Heitjans P, L'vov D,Schirmer A, Shestopal V, Stepanov S, Trostin S (2001) Physica B297:288

    ADS  Google Scholar 

  21. Abov YG, Gul'ko AD, Dzheparov FS (2006) Phys At Nuclei 69:1701

    ADS  Google Scholar 

  22. Gul'ko AD, Ermakov ON, Stepanov SV, Trostin SS (2007) JSupercond Nov Magn 20(2):169

    Google Scholar 

  23. Dzheparov FS, Gul'ko AD, Ermakov ON et al (2008) In:Salikhov KM (ed) Modern development of magnetic resonance, Abstracts of the International conference Zavoisky-100. Kazan,pp 47–48, Appl Magn Reson 35(3)

    Google Scholar 

  24. Khutsishvili G (1965) Sov Phys Usp 8:743

    ADS  Google Scholar 

  25. Alexandrov IV (1975) Theory of Magnetic Relaxation. Nauka, Moscow (inRussian)

    Google Scholar 

  26. Atsarkin VA (1980) Dynamical Nuclear Polarization. Nauka, Moscow (inRussian)

    Google Scholar 

  27. Tabti T, Goldman M, Jacquinot JF, Fermon C, LeGoff G(1997) J Chem Phys 107:9239

    ADS  Google Scholar 

  28. Dzheparov FS, Jacquinot JF, Stepanov SV (2002) Phys At Nuclei65:2052

    ADS  Google Scholar 

  29. Balagurov VY, Vaks VT (1973) Sov Phys JETP38:968

    ADS  Google Scholar 

  30. Pastur LA (1977) Teor Mat Fiz 32:88

    MathSciNet  Google Scholar 

  31. Donsker M, Varadhan S (1975) Commun Pure Appl Math28:525

    MathSciNet  Google Scholar 

  32. Havlin S, Dishon M, Kiefer JE, Weiss GH (1984) Phys RevLett 53:407

    ADS  Google Scholar 

  33. Renn SR (1986) Nucl Phys B275(FS17):273

    MathSciNet  ADS  Google Scholar 

  34. Dzheparov FS, Kaganov IV (2002) JETP Lett75:259

    ADS  Google Scholar 

  35. Atsarkin VA, Vasneva GA, Demidov VV, Dzheparov FS,Odintsov BM, Clarkson RB (2000) JETP Lett 72:369

    ADS  Google Scholar 

  36. Atsarkin VA, Demidov VV, Vasneva GA, Dzheparov FS,Ceroke PJ, Odintsov BM, Clarkson RB (2001) J Magn Res 149:85

    ADS  Google Scholar 

  37. Li D, Dementyev AE, Dong Y, Ramos R, Barrett SE(2007) Phys Rev Lett 98:190401

    ADS  Google Scholar 

  38. Grinberg ES, Kochelaev BI, Khaliullin GG (1981) Sov Phys SolidState 23:224

    Google Scholar 

  39. Dzheparov FS, Henner EK (1993) JETP77:753

    ADS  Google Scholar 

  40. Dzheparov FS, Kaganov IV, Khenner EK (1997) JETP85:325

    ADS  Google Scholar 

  41. Anderson PW, Weiss PR (1953) Rev Mod Phys25:269

    ADS  Google Scholar 

  42. Kubo R (1962) J Phys Soc Jpn 17:1100

    MathSciNet  ADS  Google Scholar 

  43. Atsarkin VA, Vasneva GA, Demidov VV (1986) Sov Phys JETP64:898

    Google Scholar 

  44. Portis AM (1953) Phys Rev 91:1071

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Dzheparov, F.S. (2009). Spin Dynamics in Disordered Solids. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_513

Download citation

Publish with us

Policies and ethics