Skip to main content

Stellar Dynamics, N-body Methods for

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 126 Accesses

Definition of the Subject

Most of astronomical objects are in the first approximation the collection of point mass particles (stars or planets). We call such systems stellarsystems, and stellar dynamics is the theoretical framework for the study of such systems. Since the equation of motion for stellar systemswith N stars is analytically solvable only for the case of \( { N=2 } \), numerical integration of the orbit of stars has been very important tool for thestudy of stellar systems.

Introduction

Stellar Dynamics deals with the evolution of systems which consist of a large number of stars interacting with other stars through mutualgravitational force. Examples of such systems include star clusters , galaxies, clusters of galaxies. Star clusters consist of up to around 10 millionstars. They are classified into two categories: open clusters and globular clusters. Open clusters are less massive and younger than globularclusters. Globular clusters in our...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.manybody.org/modest/

Abbreviations

Binary:

Two stars which orbit around each other.

Distribution function:

A density function in the six‐dimensional phase space which gives the distribution of stars in a stellar system.

Fokker–Planck equation:

Partial differential equation for the thermal evolution of the distribution function of a stellar system, expressed in the form of the advection‐diffusion equation in the phase space.

Monte-Carlo method:

The method to numerically follow the thermal evolution of stellar systems using Monte-Carlo integration of Fokker–Planck equation for the distribution function.

Relaxation:

The process which leads the system to thermal equilibrium. In the case of a stellar system, the main mechanism of relaxation is the gravitational encounter between stars.

Stellar systems:

A system composed of a large number of stars, i. e., particles which interact through mutual gravity.

Thermal stability:

Stability of the system against the re‐distribution of the thermal energy.

Bibliography

  1. Aarseth SJ (1963) MN 126:223

    ADS  Google Scholar 

  2. Aarseth SJ (1985) In: Blackbill JU, Cohen BI (eds) Multiple TimeScales. Academic Press, New York, pp 377–418

    Google Scholar 

  3. Aarseth SJ (2003) Gravitational N-Body Simulations. Cambridge University Press,Cambridge, pp 430

    Google Scholar 

  4. Barnes J, Hut P (1986) Nature 324:446

    ADS  Google Scholar 

  5. Binney J, Tremaine S (2008) Galactic Dynamics, 2nd edn. Princeton UniversityPress, Princeton

    Google Scholar 

  6. Cohn H (1980) ApJ 242:765

    ADS  Google Scholar 

  7. Cohn H, Hut P, Wise M (1989) ApJ 342:814

    ADS  Google Scholar 

  8. Goodman J (1984) ApJ 280:298

    ADS  Google Scholar 

  9. Hachisu I, Nakada Y, Nomoto K, Sugimoto D (1978) Prog Theor Phys60:393

    ADS  Google Scholar 

  10. Heggie DC (1984) MN 206:179

    ADS  Google Scholar 

  11. Henon M (1971) Astrophys Space Sci 13:284

    ADS  Google Scholar 

  12. Hernquist L (1990) J Comp Phys 87:137

    ADS  Google Scholar 

  13. Hut P, Makino J, McMillan S (1995) ApJL 443:L93

    ADS  Google Scholar 

  14. Lynden‐Bell D, Eggleton PP (1980) MN191:483

    Google Scholar 

  15. Makino J (1990) J Comput Phys 87:148

    ADS  Google Scholar 

  16. Makino J (1996) Dynamical Evolution of Star Clusters. In: Hut P, Makino J(eds) Proc IAU Symp 174. Kluwer, Amsterdam, pp 151–160

    Google Scholar 

  17. Makino J, Hut P (1988) ApJS 68:833

    ADS  Google Scholar 

  18. Makino J, Hut P, Kaplan M, Saygın H (2006) New Astron 12:124

    Google Scholar 

  19. Pfalzner S, Gibbon P (1996) Many-Body Tree Methods in Physics. CambridgeUniversity Press, Cambridge

    Google Scholar 

  20. Preto M, Tremaine S (1999) AJ7 118:2532

    Google Scholar 

  21. Salmon JK, Warren MS (1994) J Comp Phys 111:136

    ADS  Google Scholar 

  22. Sanz-Serna JM, Calvo MP (1994) Numerical Hamiltonian Problems. Chapman andHall, London

    Google Scholar 

  23. Skeel RD, Biesiadecki JJ (1994) Ann Numer Math1:191

    MathSciNet  Google Scholar 

  24. Skeel RD, Gear CW (1992) Physica D 60:311

    MathSciNet  ADS  Google Scholar 

  25. Spitzer Jr L (1987) Dynamical Evolution of Globular Clusters. PrincetonUniversity Press, Princeton

    Google Scholar 

  26. Sugimoto D, Bettwieser E (1983) MN 204:19P

    ADS  Google Scholar 

  27. Yoshikawa K, Fukushige T (2005) PASJ 57:849

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Makino, J. (2009). Stellar Dynamics, N-body Methods for. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_521

Download citation

Publish with us

Policies and ethics