Skip to main content

Stochastic Models of Biological Processes

  • Reference work entry
Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Brownian dynamics:

A level of detail in which each molecule is represented by a point-like particle and molecules move in response to diffusion and collisions

Chemical Fokker–Planck equation (CFPE):

Master equation for well-mixed systems that corresponds to the chemical Langevin equation

Chemical master equation (CME):

Master equation for the probability that the system has specific integer copy numbers for each type of chemical species; it is exact for a well-mixed system

Chemical Langevin equation (CLE):

Approximate stochastic differential equation for well-mixed systems which is based on continuous Gaussian statistics

Direct method:

An implementation of the Gillespie algorithm

Extrinsic noise:

In genetic noise studies, expression fluctuations of a gene that arise from upstream genes or global fluctuations

First‐reaction method:

An implementation of the Gillespie algorithm

Gillespie algorithm:

Exact algorithm for simulating individual trajectories of the CME

Hybrid algorithms:

Algorithms that are designed to efficiently simulate systems that have multiple timescales

Individual‐based spatial models:

Models that track individual molecules as they diffuse or react

Intrinsic noise:

Expression fluctuations of a gene that arise from that particular gene

Jump process:

A process in which the system abruptly changes from one state to another

Optimized direct method:

A computationally efficient implementation of the Gillespie algorithm

Population‐based spatial models:

Models that track how many molecules of each chemical species are in various spatial compartments

Reaction channel:

A possible reaction between specified reactant and product chemical species (the terminology distinguishes this meaning from an individual reaction event between single molecules)

Reaction‐diffusion equation:

Deterministic partial differential equation that combines mass action reaction kinetics and normal chemical diffusion

Reaction‐diffusion master equation (RDME):

Chemical master equation that accounts for diffusion as well as reactions

Reaction rate equation (RRE):

Deterministic ordinary differential equation for the net production rate of each chemical species from chemical reactions

Spatial chemical Langevin equation:

Chemical Langevin equation that accounts for diffusion as well as reactions

Stochastic simulation algorithm (SSA):

Alternative term for the Gillespie algorithm

Stoichiometric matrix (ν):

Matrix that gives the net production of each chemical species, for each chemical reaction

Tau‐leaping method:

Approximate simulation method for well-mixed systems in which molecule numbers are updated using discrete Poisson statistics

Well‐mixed hypothesis:

Assumption that mixing processes occur faster than the relevant reaction processes

Bibliography

  1. McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab4:413–478

    MathSciNet  Google Scholar 

  2. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling invivo reactions. Comp Biol Chem 28:165–178

    Google Scholar 

  3. Raser JM, O'Shea EK (2005) Noise in gene expression: Origins, consequences, andcontrol. Science 309:2010–2013

    ADS  Google Scholar 

  4. Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: Thephysiology of noise. Sci STKE 2006:re17

    Google Scholar 

  5. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation, and tolerance ofintracellular noise. Nature 420:231–237

    ADS  Google Scholar 

  6. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Ann Rev PhysChem 58:35–55

    ADS  Google Scholar 

  7. Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr OpinMicrobiol 6:125–134

    Google Scholar 

  8. Andrews SS, Arkin AP (2006) Simulating cell biology. Curr Biol16:R523–R527

    Google Scholar 

  9. McAdams HH, Arkin A (1999) It's a noisy business! Genetic regulation at thenanomolar scale. Trends Genet 15:65–69

    Google Scholar 

  10. Singer RH, Lawrence DS, Ovryn B, Condeelis J (2005) Imaging of gene expressionin living cells and tissues. Biomed J Optics 10:051406

    ADS  Google Scholar 

  11. Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single‐cell geneexpression profiling. Science 297:836–840

    ADS  Google Scholar 

  12. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expressionin a single cell. Science 297:1183–1186

    ADS  Google Scholar 

  13. Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic geneexpression. Science 304:1811–1814

    ADS  Google Scholar 

  14. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic geneexpression. Nature 422:633–637

    ADS  Google Scholar 

  15. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)Regulation of noise in the expression of a single gene. Nature Genet 31:69–73

    Google Scholar 

  16. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005)Stochastic gene expression in a lentiviral positive‐feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell122:169–182

    Google Scholar 

  17. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individualcells at the single molecule level. Nature 440:358–362

    ADS  Google Scholar 

  18. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in livecells, one protein molecule at a time. Science 311:1600–1603

    ADS  Google Scholar 

  19. Golding I, Cox EC (2006) Protein synthesis molecule by molecule. Genome Biol7:212

    Google Scholar 

  20. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard J-M, Singer RH, BertrandE (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    Google Scholar 

  21. Elowitz MB, Leibler S (2000) A synthetic oscillatory network oftranscriptional regulators. Nature 403:335–338

    ADS  Google Scholar 

  22. Sakurai JJ (1994) Modern Quantum Mechanics. Addison-Wesley, Boston

    Google Scholar 

  23. Strogatz SH (1994) Nonlinear Dynamics and Chaos. Westview Press,Cambridge

    Google Scholar 

  24. Atkins PW (1986) Physical Chemistry. Freeman, NewYork

    Google Scholar 

  25. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles, and blinkers:dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Google Scholar 

  26. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, PalssonBO (2001) Metabolic modeling of microbial strains in silico. Trends Biochem Sci 26:179–186

    Google Scholar 

  27. Varma A, Palsson BO (1994) Metabolic flux balancing: Basic concepts,scientific and practical use. Nature Biotech 12:994–998

    Google Scholar 

  28. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balanceanalysis. Curr Opin Biotech 14:491–496

    Google Scholar 

  29. Fell D (1997) Understanding the Control of Metabolism. Portland Press,London

    Google Scholar 

  30. Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclininteractions. Proc Natl Acad Sci USA 88:7328–7332

    ADS  Google Scholar 

  31. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004)Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15:3841–3862

    Google Scholar 

  32. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature420:238–245

    ADS  Google Scholar 

  33. van Zon JS, Lubensky DK, Altena PRH, ten Wolde PR (2007) An allosteric modelof circadian KaiC phosphorylation. Proc Natl Acad Sci USA 104:7420–7425

    ADS  Google Scholar 

  34. Reinitz J, Mjolsness E, Sharp DH (1995) Model for cooperative control ofpositional information in Drosophila by bicoid and maternal hunchback. Exp J Zool 271:47–56

    Google Scholar 

  35. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity networkis a robust developmental module. Nature 406:188–192

    ADS  Google Scholar 

  36. Kellershohn N, Laurent M (2001) Prion diseases: dynamics of the infection andproperties of the bistable transition. Biophys J 81:2517–2529

    Google Scholar 

  37. Ferrell JEJ, Machleder EM (1998) The biochemical basis of an all-or-none cell fateswitch in Xenopus oocytes. Science 280:895–898

    Google Scholar 

  38. Huang C-YF, Ferrell JEJ (1996) Ultrasensitivity in the mitogen‐activatedprotein kinase cascade. Proc Natl Acad Sci USA 93:10078–10083

    ADS  Google Scholar 

  39. Laurent M, Kellershohn N (1999) Multistability: a major means ofdifferentiation and evolution in biochemical systems. Trends Biochem Sci 24:418–422

    Google Scholar 

  40. Samoilov MS, Arkin AP (2006) Deviant effects in molecular reactionpathways. Nature Biotech 24:1235–1240

    Google Scholar 

  41. van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. Elsevier,Amsterdam

    Google Scholar 

  42. Haseltine EL, Rawlings JB (2005) On the origins of approximations forstochastic chemical kinetics. Chem J Phys 123:164115

    ADS  Google Scholar 

  43. Gillespie DT (1992) A rigorous derivation of the chemical masterequation. Physica A 188:404–425

    ADS  Google Scholar 

  44. Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV (1998) Implications ofmacromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sci USA 95:10547–10552

    ADS  Google Scholar 

  45. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions withspatial resolution and single molecule detail. Phys Biol 1:137–151

    ADS  Google Scholar 

  46. Munsky B, Khammash M (2006) The finite state projection algorithm for thesolution of the chemical master equation. Chem J Phys 124:044104

    ADS  Google Scholar 

  47. Peles S, Munsky B, Khammash M (2006) Reduction and solution of the chemicalmaster equation using time scale separation and finite state projection. Chem J Phys 125:204104

    ADS  Google Scholar 

  48. Kuwahara H, Myers CJ, Samoilov MS, Barker NA, Arkin AP (2006) Automatedabstraction methodology for genetic regulatory networks. Trans Comput Syst Biol 6:150–175

    MathSciNet  Google Scholar 

  49. Hegland M, Burden C, Santoso L, MacNamara S, Booth H (2007) A solver forthe stochastic master equation applied to gene regulatory networks. Comp J Appl Math 205:708–724

    MathSciNet  ADS  Google Scholar 

  50. Nedea SV, Jansen APJ, Lukkien JJ, Hilbers PAJ (2003) Infinitely fast diffusionin single‐file systems. Phys Rev E 67:046707

    ADS  Google Scholar 

  51. Chatterjee A, Vlachos DG (2006) Multiscale spatial Monte Carlo simulations:Multigriding, computational singular perturbation, and hierarchical stochastic closures. Chem J Phys 124:064110

    ADS  Google Scholar 

  52. Ambjörnsson T, Banik SK, Lomholt MA, Metzler R (2007) Master equation approachto DNA breathing in heteropolymer DNA. Phys Rev E 75:021908

    Google Scholar 

  53. Altan-Bonnet G, Libchaber A, Krichevsky O (2003) Bubble dynamics indouble‐stranded DNA. Phys Rev Lett 90:138101

    ADS  Google Scholar 

  54. Lattanzi G, Maritan A (2001) Master equation approach to molecularmotors. Phys Rev E 64:061905

    ADS  Google Scholar 

  55. Wang H-Y, Elston T, Mogilner A, Oster G (1998) Force generation in RNApolymerase. Biophys J 74:1186–1202

    Google Scholar 

  56. Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermalfluctuations: the Brownian ratchet. Biophys J 65:316–324

    Google Scholar 

  57. Paulsson J, Ehrenberg M (2000) Random signal fluctuations can reduce randomfluctuations in regulated component of chemical regulatory networks. Phys Rev Lett 84:5447–5450

    ADS  Google Scholar 

  58. Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing:fluctuation‐enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 97:7148–7153

    ADS  Google Scholar 

  59. Berg OG, Paulsson J, Ehrenberg M (2000) Fluctuations in repressor control:thermodynamic constraints on stochastic focusing. Biophys J 79:2944–2953

    Google Scholar 

  60. Li H, Hou Z, Xin H (2005) Internal noise stochastic resonance forintracellular calcium oscillations in a cell system. Phys Rev E 71:061916

    ADS  Google Scholar 

  61. Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification andsignaling in enzymatic futile cycles through noise‐induced bistability with oscillations. Proc Natl Acad Sci USA102:2310–2315

    ADS  Google Scholar 

  62. Gillespie DT (1976) A general method for numerically simulating thestochastic time evolution of coupled chemical reactions. Comp J Phys 22:435–450

    MathSciNet  Google Scholar 

  63. Gillespie DT (1977) Exact stochastic simulation of coupled chemicalreactions. Phys J Chem 81:2340–2361

    Google Scholar 

  64. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemicalsystems with many species and many channels. Phys J Chem A 104:1876–1889

    Google Scholar 

  65. Lok L, Brent R (2005) Automatic generation of cellular reaction networks withMolecularizer 1.0. Nature Biotech 23:131–136

    Google Scholar 

  66. Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochasticsimulation algorithm for chemically reacting systems. Chem J Phys 121:4059–4067

    ADS  Google Scholar 

  67. McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF (2006) The sortingdirect method for stochastic simulation of biochemical systems with varying reaction execution behavior. Comp Biol Chem30:39–49

    Google Scholar 

  68. Plyasunov S, Arkin AP (2007) Efficient stochastic sensitivity analysis ofdiscrete event systems. Comput J Phys 221:724–738

    Google Scholar 

  69. Bardwell L (2004) A walk‐through of the yeast mating pheromoneresponse pathway. Peptides 25:1465–1476

    Google Scholar 

  70. Morton-Firth CJ, Bray D (1998) Predicting temporal fluctuations in anintracellular signalling pathway. Theor J Biol 192:117–128

    Google Scholar 

  71. LeNovère N, Shimizu TS (2001) StochSim: modelling of stochastic biomolecularprocesses. Bioinformatics 17:575–576

    Google Scholar 

  72. Lu T, Volfson D, Tsimring L, Hasty J (2004) Cellular growth and division inthe Gillespie algorithm. Syst Biol 1:121–128

    Google Scholar 

  73. McAdams H, Arkin A (1998) Simulation of prokaryotic genetic circuits. Annu RevBiophys Biomol Struct 27:199–224

    Google Scholar 

  74. Paulsson J (2004) Summing up the noise in gene networks. Nature427:415–418

    ADS  Google Scholar 

  75. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc NatlAcad Sci USA 94:814–819

    ADS  Google Scholar 

  76. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis ofdevelopmental pathway bifurcation in phage lambda‐infected Escherichia coli cells. Genetics 149:1633–1648

    Google Scholar 

  77. Wolf DM, Vazirani VV, Arkin AP (2005) Diversity in times of adversity:probabilistic strategies in microbial survival games. Theor J Biol 234:227–253

    MathSciNet  Google Scholar 

  78. Fiering S, Whitelaw E, Martin DIK (2000) To be or not to be active: thestochastic nature of enhancer action. BioEssays 22:381–387

    Google Scholar 

  79. Barkai N, Leibler S (2000) Biological rhythms: Circadian clocks limited bynoise. Nature 403:267–268

    ADS  Google Scholar 

  80. Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuatingenvironments. Genetics 167:523–530

    Google Scholar 

  81. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, andinformation in fluctuating environments. Science 309:2075–2078

    ADS  Google Scholar 

  82. Pedraza JM, van Oudenaarden A (2005) Noise propagation in genenetworks. Science 307:1965–1969

    ADS  Google Scholar 

  83. Swain PS, Elowittz MB, Siggia ED (2002) Intrinsic and extrinsic contributionsto stochasticity in gene expression. Proc Natl Acad Sci USA 99:12795–12800

    ADS  Google Scholar 

  84. Mettetal JT, Muzzey D, Pedraza JM, Ozbudak EM, van Oudenaarden A (2006)Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci USA 103:7304–7309

    ADS  Google Scholar 

  85. Kierzek AM, Zaim J, Zielenkiewicz P (2001) The effect of transcription andtranslation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Biol J Chem 276:8165–8172

    Google Scholar 

  86. Peccoud J, Ycart B (1995) Markovian modeling of gene‐productsynthesis. Theor Popul Biol 48:222–234

    Google Scholar 

  87. Rosenfeld N, Young JW, Alon U, Swain PS, Elowittz MB (2005) Gene regulation atthe single‐cell level. Science 307:1962–1965

    Google Scholar 

  88. Kitano H (2004) Biological robustness. Nature Rev Genet5:826–837

    Google Scholar 

  89. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterialchemotaxis. Nature 397:168–171

    ADS  Google Scholar 

  90. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature387:913–917

    ADS  Google Scholar 

  91. Stelling J, Sauer U, Szallasi Z, Doyle FJI, Doyle J (2004) Robustness ofcellular functions. Cell 118:675–685

    Google Scholar 

  92. Vilar JMG, Kueh HY, Barkai N, Leibler S (2002) Mechanisms ofnoise‐resistance in genetic oscillators. Proc Natl Acad Sci USA 99:5988–5992

    ADS  Google Scholar 

  93. Aldana M, Cluzel P (2003) A natural class of robust networks. Proc NatlAcad Sci USA 100:8710–8714

    ADS  Google Scholar 

  94. Thattai M, van Oudenaarden A (2002) Attenuation of noise in ultrasensitivesignaling cascades. Biophys J 82:2943–2950

    Google Scholar 

  95. Yi T-M, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation inbacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649–4653

    ADS  Google Scholar 

  96. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB (2004) Noise minimization ineukaryotic gene expression. PLoBiol S 2:1–5

    Google Scholar 

  97. Voigt CA, Wolf DM, Arkin AP (2005) The Bacillus subtilis sin operon: anevolvable network motif. Genetics 169:1187–1202

    Google Scholar 

  98. Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for thetau‐leaping simulation method. Chem J Phys 124:044109

    ADS  Google Scholar 

  99. Gillespie DT, Petzold LR (2003) Improved leap‐size selection foraccelerated stochastic simulation. Chem J Phys 119:8229–8234

    Google Scholar 

  100. Gillespie DT (2001) Approximate accelerated stochastic simulation ofchemically reacting systems. Chem J Phys 115:1716–1733

    Google Scholar 

  101. Cao Y, Gillespie DT, Petzold LR (2005) Avoiding negative populations inexplicit Poisson tau‐leaping. Chem J Phys 123:054104

    ADS  Google Scholar 

  102. Chatterjee A, Mayawala K, Edwards JS, Vlachos DG (2005) Time acceleratedMonte Carlo simulations of biological networks using the binomial tau‑leap method. Bioinformatics 21:2136–2137

    Google Scholar 

  103. Pettigrew MF, Resat H (2007) Multinomial tau‐leaping method forstochastic kinetic simulations. Chem J Phys 126:084101

    ADS  Google Scholar 

  104. Zwanzig R (2001) A chemical Langevin equation with non‐Gaussiannoise. Phys J Chem B 105:6472–6473

    Google Scholar 

  105. Gillespie DT (1996) The multivariate Langevin and Fokker–Planckequations. Am Phys J 64:1246–1257

    MathSciNet  ADS  Google Scholar 

  106. Gillespie DT (2000) The chemical Langevin equation. Chem J Phys113:297–306

    ADS  Google Scholar 

  107. Gillespie DT (2002) The chemical Langevin and Fokker–Planck equationsfor the reversible isomerization reaction. Phys J Chem A 106:5063–5071

    Google Scholar 

  108. Wang H, Peskin CS, Elston TC (2003) A robust numerical algorithm forstudying biomolecular transport processes. Theor J Biol 221:491–511

    MathSciNet  Google Scholar 

  109. Xing J, Wang H, Oster G (2005) From continuum Fokker–Planck models todiscrete kinetic models. Biophys J 89:1551–1563

    Google Scholar 

  110. Tao Y (2004) Intrinsic noise, gene regulation and steady‐statestatistics in a two-gene network. Theor J Biol 231:563–568

    Google Scholar 

  111. van der Mee CVM, Zweifel PF (1987) A Fokker–Planck equation forgrowing cell populations. Math J Biol 25:61–72

    Google Scholar 

  112. Sato K, Kaneko K (2006) On the distribution of state values of reproducingcells. Phys Biol 3:74–82

    ADS  Google Scholar 

  113. Hill NA, Häder D-P (1997) A biased random walk model for thetrajectories of swimming micro‐organisms. Theor J Biol 186:503–526

    Google Scholar 

  114. Schienbein M, Gruler H (1993) Langevin equation, Fokker–Planckequation and cell migration. Bull Math Biol 55:585–608

    Google Scholar 

  115. Xing J, Liao J-C, Oster G (2005) Making ATP. Proc Natl Acad Sci USA102:16539–16546

    ADS  Google Scholar 

  116. Elston TC, Oster G (1997) Protein turbines I: the bacterial flagellarmotor. Biophys J 73:703–721

    Google Scholar 

  117. Allen RJ, Frenkel D, ten Wolde PR (2006) Simulating rare events inequilibrium or nonequilibrium stochastic systems. Chem J Phys 124:024102

    ADS  Google Scholar 

  118. Rathinam M, Petzold LR, Cao Y, Gillespie DT (2003) Stiffness in stochasticchemically reacting systems: The implicit tau‐leaping method. Chem J Phys 119:12784

    ADS  Google Scholar 

  119. Cao Y, Gillespie DT, Petzold LR (2005) The slow-scale stochastic simulationalgorithm. Chem J Phys 122:014116

    ADS  Google Scholar 

  120. Cao Y, Gillespie DT, Petzold LR (2005) Accelerated stochastic simulation ofthe stiff enzyme‐substrate reaction. Chem J Phys 123:144917

    ADS  Google Scholar 

  121. Rao CV, Arkin AP (2003) Stochastic chemical kinetics and thequasi‐steady‐state assumption: Application to the Gillespie algorithm. Chem J Phys 118:4999–5010

    ADS  Google Scholar 

  122. Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical network stochasticsimulator (BioNetS): software for stochastic modeling of biochemical networks. Bioinformatics BMC 5:24

    Google Scholar 

  123. Vasudeva K, Bhalla US (2004) Adaptive stochastic‐deterministicchemical kinetic simulations. Bioinformatics 20:78–84

    Google Scholar 

  124. Baumeister W (2002) Electron tomography: towards visualizing the molecularorganization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Google Scholar 

  125. Gierer A, Meinhardt H (1972) A theory of biological patternformation. Biol Cyber 12:30–39

    Google Scholar 

  126. Maini PK, Painter KJ, Chau HNP (1997) Spatial pattern formation in chemicaland biological systems. Chem J Soc Faraday Trans 93:3601–3610

    Google Scholar 

  127. Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpretation. Nature413:797–803

    ADS  Google Scholar 

  128. Meinhardt H, de Boer PAJ (2001) Pattern formation in Escherichia coli:A model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc Natl Acad Sci USA98:14202–14207

    ADS  Google Scholar 

  129. Howard M, Rutenberg AD (2003) Pattern formation inside bacteria:fluctuations due to the low copy number of proteins. Phys Rev Lett 90:128102

    ADS  Google Scholar 

  130. Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures in Escherichia coli:spontaneous formation of MinE rings and MinD polar zones. Proc Natl Acad Sci USA 100:12724–12728

    ADS  Google Scholar 

  131. Lutkenhaus J (2007) Assembly and dynamics of the bacterial MinCDE system andspatial regulation of the Z ring. Ann Rev Biochem 76:14.11–14.24

    Google Scholar 

  132. Fange D, Elf J (2006) Noise‐induced Min phenotypes in E coli. PLoCompS Biol 2:637–648

    Google Scholar 

  133. Kerr RA, Levine H, Sejnowski TJ, Rappel W-J (2006) Division accuracy ina stochastic model of Min oscillations in Escherichia coli. Proc Natl Acad Sci USA 103:347–352

    ADS  Google Scholar 

  134. Cytrynbaum E, Marshall BDL (2007) A multi‐stranded polymer modelexplains MinDE dynamics in E coli cell division. Biophys J 93:1134–1150

    Google Scholar 

  135. Bray D (1998) Signaling complexes: biophysical constraints on intracellularcommunication. Annu Rev Biophys Biomol Struct 27:59–75

    Google Scholar 

  136. Slepchenko BM, Schaff JC, Carson JH, Loew LM (2002) Computational cellbiology: Spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31:423–441

    Google Scholar 

  137. Meyers J, Craig J, Odde DJ (2006) Potential for control of signalingpathways via cell size and shape. Curr Biol 16:1685–1693

    Google Scholar 

  138. Rao CV, Kirby JR, Arkin AP (2005) Phosphatase localization in bacterialchemotaxis: divergent mechanisms, convergent principles. Phys Biol 2:148–158

    ADS  Google Scholar 

  139. Agmon N, Edelstein AL (1997) Collective binding properties of receptorarrays. Biophys J 72:1582–1594

    Google Scholar 

  140. Lagerholm BC, Thompson NL (1998) Theory for ligand rebinding at cellmembrane surfaces. Biophys J 74:1215–1228

    Google Scholar 

  141. Andrews SS (2005) Serial rebinding of ligands to clustered receptors asexemplified by bacterial chemotaxis. Phys Biol 2:111–122

    ADS  Google Scholar 

  142. Elf J, Ehrenberg M (2004) Spontaneous separation of bi‐stablebiochemical systems into spatial domains of opposite phases. Syst Biol 1:230–236

    Google Scholar 

  143. van Zon JS, ten Wolde PR (2005) Green's function reaction dynamics:A particle‐based approach for simulating biochemical networks in time and space. Chem J Phys 123:234910

    ADS  Google Scholar 

  144. Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realisticsynaptic microphysiology using MCell. In: De Schutter E (ed) Computational Neuroscience: Realistic Modeling for Experimentalists. Press CRC, BocaRaton

    Google Scholar 

  145. Dab D, Boon J-P, Li Y-X (1991) Lattice‐gas automata for coupledreaction‐diffusion equation. Phys Rev Lett 66:2535–2539

    ADS  Google Scholar 

  146. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches tobiological modeling. Theor J Biol 160:97–133

    Google Scholar 

  147. Duke TAJ, LeNovère N, Bray D (2001) Conformational spread in a ring ofproteins: a stochastic approach to allostery. Mol J Biol 308:541–553

    Google Scholar 

  148. Goldman J, Andrews SS, Bray D (2004) Size and composition of membraneprotein clusters predicted by Monte Carlo analysis. Eur Biophys J 33:506–512

    Google Scholar 

  149. Grima R, Schnell S (2006) A systematic investigation of the rate lawsvalid in intracellular environments. Biophys Chem 124:1–10

    Google Scholar 

  150. Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol52:153–197

    Google Scholar 

  151. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. RevMod Phys 65:851–1123

    ADS  Google Scholar 

  152. Slepchenko B, Schaff J, Macara I, Loew LM (2003) Quantitative cell biologywith the Virtual Cell. Cell TRENDS Biol 13:570–576

    Google Scholar 

  153. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM (2000) Animage-based model of calcium waves in differentiated neuroblastoma cells. Biophys J 79:163–183

    Google Scholar 

  154. Fink CC, Slepchenko B, Moraru II, Schaff J, Watras J, Loew LM (1999)Morphological control of inositol-1,4,5-triphosphate‐dependent signals. Cell J Biol 147:929–935

    Google Scholar 

  155. Hernjak N, Slepchenko B, Fernald K, Fink CC, Fortin D, Moraru II, Watras J,Loew LM (2005) Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J89:3790–3806

    Google Scholar 

  156. Baras F, Malek-Mansour M (1996) Reaction‐diffusion master equation:A comparison with microscopic simulations. Phys Rev E 54:6139–6148

    ADS  Google Scholar 

  157. Stundzia AB, Lumsden CJ (1996) Stochastic simulation of coupledreaction‐diffusion processes. Comput J Phys 127:196–207

    Google Scholar 

  158. Nicolis G, Malek-Mansour M (1980) Systematic analysis of the multivariatemaster equation for a reaction‐diffusion system. Stat J Phys 22:495–512

    MathSciNet  ADS  Google Scholar 

  159. Kruse K, Elf J (2006) Kinetics in spatially extended systems. In: SzallasiZ, Stelling J, Periwal V (eds) System Modeling in Cell Biology From Concepts to Nuts and Bolts. Press MIT, Cambridge, pp177–198

    Google Scholar 

  160. Hynes JT (1985) The theory of reactions in solution. In: Baer M (ed) Theoryof Chemical Reaction Dynamics. Press CRC, Boca Raton, pp 171–234

    Google Scholar 

  161. Cohen B, Huppert D, Agmon N (2000) Non‐exponential Smoluchowskidynamics in fast acid-base reaction. Am J Chem Soc 122:9838–9839

    Google Scholar 

  162. Noyes RM (1955) Kinetics of competitive processes when reactive fragmentsare produced in pairs. Am J Chem Soc 77:2042–2045

    Google Scholar 

  163. Pines E, Huppert D (1988) Geminate recombination in excited‐stateproton transfer reactions: Numerical solution of the Debye–Smoluchowski equation with backreaction and comparison with experimental results. Chem JPhys 88:5620–5630

    Google Scholar 

  164. Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueouscompartments. Trends Biochem Sci 27:27–33

    Google Scholar 

  165. Schnell S, Turner TE (2004) Reaction kinetics in intracellular environmentswith macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85:235–260

    Google Scholar 

  166. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Google Scholar 

  167. Bernstein D (2005) Simulating mesoscopic reaction‐diffusion systemsusing the Gillespie algorithm. Phys Rev E 71:041103

    MathSciNet  ADS  Google Scholar 

  168. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, KaplanA, Lemerle C, Tomás-Oliveira I, Serrano L (2004) SmartCell, a framework to simulate cellular processes that combines stochastic approximation withdiffusion and localisation: analysis of simple networks. Syst Biol 1:129–138

    Google Scholar 

  169. Fricke T, Schnakenberg J (1990) Monte-Carlo simulation of an inhomogeneousreaction‐diffusion system in the biophysics of receptor cells. Z Phys B 83:277–284

    ADS  Google Scholar 

  170. Isaacson SA, Peskin CS (2006) Incorporating diffusion in complex geometriesinto stochastic chemical kinetics simulations. Sci SIAMJ Comput 28:47–74

    MathSciNet  Google Scholar 

  171. Hattne J, Fange D, Elf J (2005) Stochastic reaction‐diffusionsimulation with MesoRD. Bioinformatics 21:2923–2924

    Google Scholar 

  172. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithmsto applications. Academic, San Diego

    Google Scholar 

  173. Berg HC (1993) Random Walks in Biology. Princeton Univ Press,Princeton

    Google Scholar 

  174. Gillespie DT (1996) The mathematics of Brownian motion and Johnson noise. AmPhys J 64:225–240

    MathSciNet  ADS  Google Scholar 

  175. Rice SA (1985) Diffusion Limited Reactions. Elsevier, Amsterdam

    Google Scholar 

  176. Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamicinteractions. Chem J Phys 69:1352–1360

    ADS  Google Scholar 

  177. Northrup SH, Allison SA, McCammon JA (1984) Brownian dynamics simulation ofdiffusion‐influenced bimolecular reactions. Chem J Phys 80:1517–1524

    ADS  Google Scholar 

  178. Northrup SH (1988) Diffusion‐controlled ligand binding to multiplecompeting cell-bound receptors. Phys J Chem 92:5847–5850

    Google Scholar 

  179. Northrup SH, Erickson HP (1992) Kinetics of protein‐proteinassociation explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA 89:3338–3342

    ADS  Google Scholar 

  180. Edelstein AL, Agmon N (1993) Brownian dynamics simulations of reversiblereactions in one dimension. Chem J Phys 99:5396–5404

    ADS  Google Scholar 

  181. Oh C, Kim H, Shin KJ (2002) Excited‐state diffusion‐influencedreversible association‐dissociation reaction: Brownian dynamics simulation in three dimensions. Chem J Phys117:3269–3277

    ADS  Google Scholar 

  182. Kim H, Yang M, Shin KJ (1999) Dynamic correlation effect in reversiblediffusion‐influenced reactions: Brownian dynamics simulation in three dimensions. Chem J Phys 111:1068–1075

    ADS  Google Scholar 

  183. Agmon N, Edelstein A (1995) Geometric and many‐particle aspects oftransmitter binding. Biophys J 68:815–825

    Google Scholar 

  184. Edelstein AL, Agmon N (1997) Brownian simulation of many‐particlebinding to a reversible receptor array. Comput J Phys 132:260–275

    ADS  Google Scholar 

  185. Agmon N, Szabo A (1990) Theory of reversible diffusion‐influencedreactions. Chem J Phys 92:5270–5284

    ADS  Google Scholar 

  186. Kim H, Shin KJ (1999) Exact solution of the reversiblediffusion‐influenced reaction for an isolated pair in three dimensions. Phys Rev Lett 82:1578–1581

    ADS  Google Scholar 

  187. van Zon JS, ten Wolde PR (2005) Simulating biochemical networks at theparticle level in time and space: Green's function reaction dynamics. Phys Rev Lett 94:128103

    ADS  Google Scholar 

  188. van Zon JS, Morelli MJ, Tanase-Nicola S, ten Wolde PR (2006) Diffusion oftranscription factors can drastically enhance the noise in gene expression. Biophys J 91:4350–4367

    Google Scholar 

  189. Lipkow K (2006) Changing cellular location of CheZ predicted by molecularsimulations. Comp PLOS Biol 2:301–310

    Google Scholar 

  190. Lipkow K, Andrews SS, Bray D (2004) Simulated diffusion of CheYp through thecytoplasm of E coli. J Bact 187:45–53

    Google Scholar 

  191. Tournier AL, Fitzjohn PW, Bates PA (2006) Probability‐based model ofprotein‐protein interactions on biological timescales. Algorithms Molec Biol 1:25

    Google Scholar 

  192. Tolle DP, Le Novère N (2006) Particle‐based stochastic simulation insystems biology. Curr Bioinformatics 1:1–6

    Google Scholar 

  193. Franks KM, Bartol TM, Sejnowski TJ (2002) A Monte Carlo model revealsindependent signaling at central glutametergic synapses. Biophys J 83:2333–2348

    Google Scholar 

  194. Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK,Ellisman MH, Sejnowski TJ (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309:446–451

    ADS  Google Scholar 

  195. Koh X, Srinivasan B, Ching HS, Levchenko A (2006) A 3D Monte Carloanalysis of the role of dyadic space geometry in spark generation. Biophys J 90:1999–2014

    Google Scholar 

  196. Stiles JR, van Helden D, Thomas J, Bartol M, Salpeter EE, Salpeter MM (1996)Miniature endplate current rise times < 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion froma synaptic vesicle. Proc Natl Acad Sci USA 93:5747–5752

    ADS  Google Scholar 

  197. Stiles JR, Kovyazina IV, Salpeter EE, Salpeter MM (1999) The temperaturesensitivity of miniature endplate currents is mostly governed by channel gating: Evidence from optimized recordings and Monte Carlo simulations. Biophys J77:1177–1187

    Google Scholar 

  198. Bartol TMJ, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulationof miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307

    Google Scholar 

  199. Howard M, Rutenberg AD, de Vet S (2001) Dynamic compartmentalization ofbacteria: accurate division in E coli. Phys Rev Lett 87:278102

    ADS  Google Scholar 

  200. Kruse K (2002) A dynamic model for determining the middle ofEscherichia coli. Biophys J 82:618–627

    Google Scholar 

  201. Wio HS (1996) Stochastic resonance in a spatially extended system. PhysRev E 54:R3075–R3078

    MathSciNet  ADS  Google Scholar 

  202. Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipidvesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99:6761–6766

    ADS  Google Scholar 

  203. Hu Z, Saez C, Lutkenhaus J (2003) Recruitment of MinC, an inhibitor ofZ-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bact 185:196–203

    Google Scholar 

  204. Shih Y-L, Fu X, King GF, Le T, Rothfield L (2002) Division site placement inE coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBOJ21:3347–3357

    Google Scholar 

  205. Shih Y-L, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cellpoles. Proc Natl Acad Sci USA 100:7865–7870

    ADS  Google Scholar 

  206. Shih Y-L, Kawagishi I, Rothfield L (2005) The MreB and Mincytoskeletal‐like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928

    Google Scholar 

  207. Suefuji K, Valluzzi R, RayChaudhuri D (2002) Dynamic assembly of MinD intofilament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci USA 99:16776–16781

    ADS  Google Scholar 

  208. Pavin N, Paljetak C, Krstic V (2006) Min‐protein oscillations inEscherichia coli with spontaneous formation of two‐stranded filaments in a three‐dimensional stochastic reaction‐diffusionmodel. Phys Rev E 73:021904

    ADS  Google Scholar 

  209. Adelman JL, Andrews SS (2004) Intracellular pattern formation:A spatial stochastic model of bacterial division site selection proteins MinProc CDE. Complex Systems Summer School Final Project Papers, Santa Fe Institute, Santa Fe

    Google Scholar 

  210. Drew DA, Osborn MJ, Rothfield LI (2005)A polymerization‐depolymerization model that accurately generates the self‐sustained oscillatory system involved in bacterial divisionsite placement. Proc Natl Acad Sci USA 102:6114–6118

    ADS  Google Scholar 

  211. Andrews SS, Arkin AP (2007) A mechanical explanation for cytoskeletalrings and helices in bacteria. Biophys J 93:1872–1884

    Google Scholar 

  212. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    Google Scholar 

Download references

Acknowledgments

This work was funded by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Andrews, S.S., Dinh, T., Arkin, A.P. (2009). Stochastic Models of Biological Processes. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_524

Download citation

Publish with us

Policies and ethics