Skip to main content

Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

The term ‘submarine landslide’ encompassesa multitude of gravitational mass failure features at areal scales from square meters to thousands of square kilometers. Here, we concentrate on thelarge end of that spectrum, namely the submarine landslides that, when they move either in contained slip events or catastrophically, can generate surfacedisplacements equivalent to \( { > M 6 } \)earthquakes and/or hazardous tsunami.

The term ‘slow earthquake’ describes a discrete slipevent that produces millimeter to meter-scale displacements identical to those produced during earthquakes but without the associated seismicshaking. Slow earthquakes, primarily associated with tectonic fault zones, have been recognized and studied with increasing frequency in the past decadelargely due to the decreasing cost and proliferation of Global Positioning System (GPS) geodetic networks capable of detecting the groundmotion [1,2,3]. Recently, one such GPS network on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Submarine landslide:

A gravitational mass failure feature on the seafloor.

Slow earthquake:

A discrete slip event that produces millimeter to meter-scale displacements identical to those produced during earthquakes but without the associated seismic shaking.

GPS:

The Global Positioning System consists of a constellation of at least 24 medium earth orbiting satellites transmitting two or more microwave frequencies for use in precise positioning.

Seafloor geodesy:

The application of geodetic methods (studies of the change in the shape of the earth's surface) applied to a submarine environment.

Bibliography

  1. Dragert H, Wang K, James TS (2001) A silent slip event on the deeperCascadia subduction interface. Science 292:1525–1528

    ADS  Google Scholar 

  2. Miller MM, Melbourne TI, Johnson DJ, Sumner WQ (2002) Periodic slow earthquakesfrom the Cascadia subduction zone. Science 295:2423

    Google Scholar 

  3. Ozakawa S, Murakami M, Tada T (2001) Time‐dependent inversion study of theslow thrust event in the Nankai trough subduction zone, southwestern Japan. J Geophys Res 106:782–802

    ADS  Google Scholar 

  4. Brooks BA, Foster JH, Bevis MF, Frazer LN, Wolfe CJ, Behn M (2006) Periodic slowearthquakes on the flank of Kilauea volcano, Hawai'i Earth and Planet Sci Lett 246:207–216

    Google Scholar 

  5. Cervelli P, Segall P, Johnson K, Lisowski M, Miklius A (2002) Sudden aseismicfault slip on the south flank of Kilauea volcano. Nature 415:1014–1018

    ADS  Google Scholar 

  6. Segall P, Desmarais EK, Shelly D, Miklius A, Cervelli P (2006) EarthquakesTriggered by Silent Slip Events on Kilauea Volcano, Hawaii. Nature 442:71–74

    ADS  Google Scholar 

  7. Spiess FN et al (1998) Precise GPS/Acoustic positioning of seafloor referencepoints for tectonic studies. Phys Earth Planet Inter 108:101–112

    ADS  Google Scholar 

  8. Moore JG et al (1989) Prodigious Submarine Landslides on the Hawaiian Ridge. J Geophys Res 94:17465–17484

    ADS  Google Scholar 

  9. Krastel S et al (2001) Submarine landslides around the Canary Islands. J GeophysRes 106:3977–3997

    ADS  Google Scholar 

  10. Carracedo JC, Day SJ, Guillou H, Perez Torrado FJ (1999) Giant Quaternarylandslides in the evolution of La Palma and El Hierro, Canary Islands. J Volcan Geotherm Res 94:169–190

    ADS  Google Scholar 

  11. Day SJ, Heleno da Silva SIN, Fonseca JFBD (1999) A past giant lateralcollapse and present‐day flank instability of Fogo, Cape Verde Islands. J Volcan Geotherm Res 94:191–218

    ADS  Google Scholar 

  12. Tucholke B (1992) Massive submarine rockslide in the rift‐valley wall ofthe Mid‐Atlantic Ridge. Geology 20:129–132

    ADS  Google Scholar 

  13. Driscoll N, Weissel JK, Goff JA (2000) Potential for large-scale submarineslope failure and tsunami generation along the US Mid‐Atlantic coast. Geology 28:407–410

    ADS  Google Scholar 

  14. Moore JG (1964) Giant submarine landslides on the Hawaiian Ridge. US GeolSurvey Prof Paper D 501:95–98

    Google Scholar 

  15. Moore JG, Fiske RS (1969) Volcanic substructure inferred from dredge samplesand ocean‐bottom photographs, Hawaii. Geol Soc Am Bull 80:1191–1202

    Google Scholar 

  16. Marti J, Hurlimann M, Ablay G, Gudmundsson A (1997) Vertical and lateralcollapses on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25:879–882

    ADS  Google Scholar 

  17. Ward SN, Day S (2001) Cumbre Vieja Volcano – Potential collapse andtsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400

    ADS  Google Scholar 

  18. Clague DA, Moore JG (2002) The proximal part of the giant submarine Wailaulandslide, Molokai, Hawaii. J Volcan Geotherm Res 113:259–287

    ADS  Google Scholar 

  19. Coombs ML, Clague DA, Moore GF, Cousens BL (2004) Growth and collapse ofWaianae Volcano, Hawaii, as revealed by exploration of its submarine flanks. Geochem Geophys Geosyst 5:doi:10.1029/2004GC000717

  20. Morgan JK, Clague DA, Borchers DC, Davis AS, Milliken KL (2007) Mauna Loa'ssubmarine western flank: Landsliding, deep volcanic spreading, and hydrothermal alteration. Geochem Geophys Geosyst 8:Q05002;doi:10.1029/2006GC001420

    ADS  Google Scholar 

  21. Morgan JK, Moore GF, Clague DA (2003) Slope failure and volcanic spreadingalong the submarine south flank of Kilauea volcano, Hawaii. J Geophys Res 108:2415, doi:10.1029/2003JB002411

    Google Scholar 

  22. Dieterich J (1988) Growth and Persistence of Hawaiian Volcanic Rift Zones. J Geophys Res 93:4258–4270

    ADS  Google Scholar 

  23. Iverson RM (1995) Can magma‐injection and groundwater forces causemassive landslides on Hawaiian volcanoes? J Volcan Geotherm Res 66:295–308

    ADS  Google Scholar 

  24. Cannon EC, Bürgmann R, Owen SE (2001) Shallow normal faulting and blockrotation associated with the 1975 Kalapana earthquake, Kilauea volcano, Hawaii. Bull Seismol Soc Am 91:1553–1562

    Google Scholar 

  25. Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Ann RevEarth Planet Sci 22:119–144

    ADS  Google Scholar 

  26. Bardet J-P, Synolakis CE, Davies HL, Imamura F, Okal EA (2003) LandslideTsunamis: Recent Findings and Research Directions. Pure Appl Geophys 160:1793–1809

    ADS  Google Scholar 

  27. Hasegawa HS, Kanamori H (1987) Source Mechanism of the Magnitude 7.2 GrandBanks Earthquake of November 18, 1929: Double‐couple or Submarine Landslide? Bull Seismol Soc Am 77:1984–2004

    Google Scholar 

  28. Yeh H et al (1993) The Flores Island Tsunami. Eos, Transactions, Am GeophysUnion 74:371–373

    ADS  Google Scholar 

  29. Imamura F, Synolakis CE, Titov V, Lee S (1995) Field Survey of the 1994Mindoro Island, Phillipines Tsunami. Pure Appl Geophys 144:875–890

    ADS  Google Scholar 

  30. Geist EL (2000) Origin of the 17 July 1998 Papua New Guinea Tsunami:Earthquake or Landslide? Seismol Res Lett 71:344–351

    Google Scholar 

  31. Yalciner AC et al (1999) Field Survey of the 1999 Izmit Tsunami and ModelingEffort of New Tsunami Generation Mechanism. Eos, Transactions, Am Geophys Union F751(abstract):80

    Google Scholar 

  32. Caminade JP et al (2001) Vanuatu Earthquake and Tsunami Caused Much Damage,Few Casualties. Eos Trans Am Geophys Union 81:641,646–647

    Google Scholar 

  33. Nettles M, Ekstrom G (2004) Long‐Period Source Characteristics of the1975 Kalapana, Hawaii, Earthquake. Bull Seismol Soc Am 94:422–429

    Google Scholar 

  34. Tilling RI et al (1976) Earthquake and Related Catastrophic Events, Island ofHawaii, November 29, 1975: A preliminary report. US Geol Surv Circ 740:33

    Google Scholar 

  35. Day SJ, Watts P, Grilli ST, Kirby JT (2004) Mechanical models of the 1975Kalapana, Hawaii earthquake and tsunami. Mar Geol 215:59–92, doi:10.1016/j.margeo.2004.11.008

    Google Scholar 

  36. Okal EA, Synolakis CE (2003) A Theoretical Comparison of Tsunamis fromDislocations and Landslides. Pure Appl Geophys 160:2177–2188

    ADS  Google Scholar 

  37. Ward S (2001) Landslide tsunami. J Geophys Res106:11201–11215

    ADS  Google Scholar 

  38. Murty TS (2003) Tsunami wave height dependence on landslide volume. Pure ApplGeophys 160(10–11):2147–2153

    ADS  Google Scholar 

  39. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The GrandBanks landslide‐generated tsunami of November 18, 1929, preliminary analysis and numerical modeling. Mar Geol215:45–57

    Google Scholar 

  40. Phillips KA, Chadwell CD, Hildebrand JA (2008) Vertical deformationmeasurements on the submerged south flank of Kilauea volcano, Hawai`i reveal seafloor motion associated with volcanic collapse. J Geophys Res 113:B05106;doi:10.1029/2007JB005124

    ADS  Google Scholar 

  41. Owen S et al (2000) Rapid deformation of Kilauea Volcano: Global PositioningSystem measurements between 1990 and 1996. J Geophys Res B: Solid Earth 105:18983–18998

    ADS  Google Scholar 

  42. Delaney PT et al (1998) Volcanic spreading at Kilauea, 1976–1996. J Geophys Res 103:18003–18023

    ADS  Google Scholar 

  43. Kanamori H, Stewart GS (1979) A slow earthquake. Phys Earth Planet Inter18:167–175

    ADS  Google Scholar 

  44. Sacks IS, Suyehiro S, Linde AT, Snoke JA (1978) Slow earthquakes and stressredistribution. Nature 275:599–602

    ADS  Google Scholar 

  45. Ihmle PF, Jordan TH (1994) Teleseismic search for slow precursors to largeearthquakes. Science 266:1547–1551

    ADS  Google Scholar 

  46. Kedar S, Watada S, Tanimoto T (1994) The 1989 Macquarie Ridge earthquake:Seismic moment estimation from long‐period free oscillations. J Geophys Res 99:17893–17908

    ADS  Google Scholar 

  47. McGuire JJ, Ihmle PF, Jordan TH (1996) Time‐domain observations ofa slow precursor to the 1994 Romanche transform earthquake. Science 274:82–85

    ADS  Google Scholar 

  48. Kanamori H, Cipar JJ (1974) Focal process of the great Chilean earthquake May22:1960. Phys Earth Planet Inter 9:128–136

    ADS  Google Scholar 

  49. Burgmann R et al (2001) Rapid aseismic moment release following the 5December, 1997 Kronotsky, Kamchatka, earhquake. Geophys Res Lett 28:1331–1334

    ADS  Google Scholar 

  50. Heki K, Miyazaki S-I, Tsuji H (1997) Silent fault slip following an interplatethrust earthquake at the Japan Trench. Nature 386:595–598

    ADS  Google Scholar 

  51. Segall P, Burgmann R, Matthews M (2000) Time‐dependent triggeredafterslip following the 1989 Loma Prieta earthquake. J Geophys Res B: Solid Earth 105:5615–5634

    ADS  Google Scholar 

  52. Linde AT, Gladwin MT, Johnston MJS, Gwyther RL, Bilham RG (1996) A slowearthquake sequence on the San Andreas Fault. Nature (London) 383:65–68

    ADS  Google Scholar 

  53. Gwyther RL, Gladwin MT, Mee M, Hart RHG (1996) Anomalous shear strain atParkfield during 1993–94. Geophys Res Letters 23:2425–2428

    ADS  Google Scholar 

  54. Gao SS, Silver PG, Linde AT (2000) Analysis of deformation data at Parkfield,California: Detection of a long-term strain transient. J Geophys Res 105:2955–2967

    ADS  Google Scholar 

  55. Lienkaemper JL, Galehouse JS, Simpson RW (1997) Creep Response of the HaywardFault to Stress Changes Caused by the Loma Prieta Earthquake. Science 276:2014–2016

    Google Scholar 

  56. Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake: a slowtsunami earthquake associate with subducted sediments. Nature 361:714–716

    ADS  Google Scholar 

  57. Lowry AR, Larson KM, Kostoglodov V, Bilham R (2001) Transient fault slip inGuerrero, southern Mexico. Geophys Res Lett 28:3753–3756

    ADS  Google Scholar 

  58. Lowry AR (2006) Resonant slow fault slip in subduction zones forced byclimatic load stress. Nature 442(7104):802–805

    ADS  Google Scholar 

  59. Ito Y, Obara K, Shiomi K, Sekine S, Hirose H (2006) Slow earthquakescoincident with episodic tremors and slow slip events. Science 26:503–506

    Google Scholar 

  60. Rogers G, Dragert H (2003) Episodic Tremor and slip on the Cascadia SubductionZone: The chatter of silent slip. Science 300:1942–1943

    ADS  Google Scholar 

  61. Ide S, Beroza GC, Shelly DR, Uchide T (2007) A scaling law for slowearthquakes. Nature 447:76–79; doi:10.1038/nature05780

    ADS  Google Scholar 

  62. Aki K, Fehler M, Das S (1977) Source mechanism of volcanic tremors: fluiddriven crack models and their application to the 1963 Kilauea eruption. J Volcan Geotherm Res 141:259–287

    Google Scholar 

  63. Rubenstein JL et al (2007) Non‐volcanic tremor driven by large transientshear stresses. Nature 448:579–582

    ADS  Google Scholar 

  64. Shelly DR, Beroza GC, Ide S (2007)Non‐volcanic tremor andlow‐frequency earthquake swarms. Nature 446:305–307; doi:10.1038/nature05666

  65. Peacock S, Wang K (1999) Seismic Consequences of Warm Versus Cool SubductionMetamorphism: Examples from Southwest and Northeast Japan. Science 286:937–939

    Google Scholar 

  66. Julian B (2002) Seismological detection of slab metamorphism. Science296:1625–1626

    Google Scholar 

  67. Kato N (2004) Interaction of slip on asperities: Numerical simulation ofseismic cycles on a two‐dimensional planar fault with nonuniform frictional property. J Geophys Res 109:B12306;doi:10.1029/2004JB003001

    ADS  Google Scholar 

  68. Liu Y, Rice JR (2005) Aseismic slip transients emerge spontaneously inthree‐dimensional rate and state modeling of subduction earthquake sequences. J Geophys Res 110:B08307;doi:10.1029/2004JB003424

    ADS  Google Scholar 

  69. Miyazaki S, McGuire JJ, Segall P (2003) A transient subduction zone slipepisode in southwest Japan observed by the nationwide GPS array. J Geophys Res 108(B2):2087;doi:10.1029/2001JB000456

    Google Scholar 

  70. Kostoglodov V et al (2003) A large silent earthquake in the Guerreroseismic gap, Mexico. Geophys Res Lett 30:1807, doi:10.1029/2003GL017219

    ADS  Google Scholar 

  71. Freymueller J et al (2001) The great alaska ‘earthquake’ of1998–2001. EOS Trans Am Geophys Un 82(47)

    Google Scholar 

  72. Hirose H, Hirahara K, Kimata F, Fujii F, Miyazaki S (1999) A slow thrustslip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys Res Lett26:3237–3240

    ADS  Google Scholar 

  73. Baum RL, Reid ME (1995) Geology, hydrology, and mechanics of a slow-moving,clay-rich landslide, Honolulu, Hawaii. In: Haneberg WC, Anderson SA (eds) Clay and Shale Slope Instability. Geol. Soc. of Am, Boulder,Colorado

    Google Scholar 

  74. Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning Systemtechniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute‐Provence, France). Geomorphology43:33–54

    ADS  Google Scholar 

  75. Hilley GE et al (2004) Dynamics of slow-moving landslides from permanentscatterer analysis. Science 304(5679):1952–1955

    ADS  Google Scholar 

  76. Chadwell CD et al (1999) No spreading across the southern Juan de Fuca Ridgeaxial cleft during 1994–1996. Geophys Res Lett 26:2525–2528

    ADS  Google Scholar 

  77. Chadwick WW, Embley RW, Milburn HR, Meining C, Stapp M (1999) Evidence fordeformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements. Geophys Res Lett26:3441–3444

    ADS  Google Scholar 

  78. Gagnon K, Chadwell CD, Norabuena E (2005) Measuring the onset of locking inthe Peru-Chile trench with GPS and acoustic measurements. Nature 434:205–208

    ADS  Google Scholar 

  79. Sweeney AD, Chadwell CD, Hildebrand JA, Spiess FN (2005)Centimeter‐level positioning of seafloor acoustic transponders from a deeply‐towed interrogator. Mar Geol 28:39–70,doi:10.1080/01490410590884502

    Google Scholar 

  80. Cervelli P, Murray MH, Segall P, Aoki Y, Kato T (2001) Estimating sourceparameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan J Geophys Res106:11217–11237

    ADS  Google Scholar 

  81. Dixon TH (1991) An Introduction to the Global Positioning System and SomeGeological Applications. Rev Geophys 29:249–276

    ADS  Google Scholar 

  82. Hager BH, King RW, Murray MH (1991) Measurement of Crustal Deformation Usingthe Global Positioning System. Ann Rev Earth Planet Sci 19:351–382

    ADS  Google Scholar 

  83. Segall P, Davis JL (1997) GPS applications for geodynamics and earthquakestudies. Ann Rev Earth Planet Sci 25:301–336

    ADS  Google Scholar 

  84. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy ofGPS‐derived relative positions as a function of interstation distance and observing‐session duration. J Geodesy75:633–640

    ADS  Google Scholar 

  85. Leick A (2004) GPS satellite surveying. Wiley,Hoboken

    Google Scholar 

  86. Warnant R, Kutiev I, Marinov P, Bavier M, Lejeune S (2007) Ionospheric andgeomagnetic conditions during periods of degraded GPS position accuracy: 1. Monitoring variability in TEC which degrades the accuarcy of Real-TimeKinematic GPS applications. Adv Space Res 39:875–880

    ADS  Google Scholar 

  87. Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodeticpositioning at medium distances with the Global Positioning System. J Geophys Res 105:28233–28253

    ADS  Google Scholar 

  88. Langbein, J (2004) Noise in two-color electronic distance meter measurementsrevisited. J Geophys Res 109:B04406; doi:10.1029/2003JB002819

    ADS  Google Scholar 

  89. Brooks BA, Foster JF, Miklius A, Schenewerk M (2005) Extended GPS Network andNear Real-Time processing, Mauna Loa Volcano, Hawai`i. Eos Trans AGU, 86:Fall Meet Suppl

    Google Scholar 

  90. Schenewerk M, Dillinger W, Hilla S (2000)http://www.ngs.noaa.gov/GRD/GPS/DOC/toc.html

  91. Mader G, MacKay JR (1996) Geoscience Laboratory, Office of Ocean and EarthSciences NOS, NOAA. Silver Spring, Maryland

    Google Scholar 

  92. McCarthy D, Petit G (eds) (2003) IERS Technical Note32

    Google Scholar 

  93. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys JR Astron Soc 33:253–264

    Google Scholar 

  94. Cartwright DE, Taylor RJ (1971) New computation in the tide‐generatingpotential. Geophys J R Astron Soc 23:45–74

    Google Scholar 

  95. Foster J, Bevis M, Chen Y-L, Businger S, Zhang Y (2003) The Ka`u Storm (Nov2000): Imaging precipitable water using GPS. J Geophys Res 108:4585

    Google Scholar 

  96. Segall P, Matthews M (1997) Time dependent inversion of geodetic data. J Geohys Res 102:22391–22409

    ADS  Google Scholar 

  97. Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slantwet delays. Ann Geophys 18:223–234

    ADS  Google Scholar 

  98. Spiess FN (1985) Analysis of a possible sea floor strain measurementsystem. Mar Geodesy 9:385–398

    Google Scholar 

  99. Zumberge M (1997) Precise Optical Path Length Measurement Through an OpticalFiber: Application to Seafloor Strain Monitoring. Ocean Eng 24:532–542

    Google Scholar 

  100. Zumberge M et al (2006) In: Nadim F, Pottler R, Einstein H, Klapperich H,Kramer S (eds) 2006 ECI Conference on Geohazards. Lillehammer, Norway

    Google Scholar 

  101. Okada Y (1985) Surface deformation due to shear and tensile faults ina half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  102. Steketee JA (1958) Some Geophysical Applications of the Elasticity Theory ofDislocations. Can J Phys 36:1168–1198

    MathSciNet  ADS  Google Scholar 

  103. Menke W (1984) Geophysical Data Analysis: Discrete Inverse Theory. AcademicPress Inc, San Diego

    Google Scholar 

  104. Brooks BA, Frazer LN (2005) Importance reweighting reduces dependence ontemperature in Gibbs samplers: an application to the coseismic geodetic inverse problem. Geophys J Int 161:12–21

    ADS  Google Scholar 

  105. Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverseproblems. Inverse Probl 18:29–54

    MathSciNet  Google Scholar 

  106. Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulatedannealing. Science 220:671–680

    MathSciNet  ADS  Google Scholar 

  107. Hudnut KW et al (1996) Co‐Seismic Displacements of the 1994Northridge, California, Earthquake. Bull Seismol Soc Am 86:19–36

    Google Scholar 

  108. Dieterich J, Cayol V, Okubo PG (2000) The use of earthquake rate changes asa stress meter at Kilauea volcano. Nature 408:457–460

    ADS  Google Scholar 

  109. Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature402:605–609

    ADS  Google Scholar 

  110. Hansen S, Thurber CH, Mandernach MJ, Haslinger F, Doran C (2004) Seismicvelocity and attenuation structure of the East Rift Zone and South Flank of Kilauea Volcano, Hawaii. Bull Seismol Soc Am94:1430–1440

    Google Scholar 

  111. Got J-L, Okubo PG (2003) New insights into Kilauea's volcano dynamicsbrought by large-scale relative relocation of microearthquakes. J Geophys Res 108(B7):2337;doi:10.1029/2002JB002060

    Google Scholar 

  112. Wolfe CJ, Brooks BA, Foster JH, Okubo PG (2007) Microearthquake streaks andseismicity triggered by slow earthquakes on the mobile south flank of Kilauea Volcano, Hawai`i. Geophys Res Lett (In press)

    Google Scholar 

  113. McGuire JJ, Segall P (2003) Imaging of aseismic fault slip transientsrecorded by dense geodetic networks. Geophys J Int 155:778–788

    ADS  Google Scholar 

  114. Scholz CJ (1998) Earthquakes and friction laws. Nature391:37–42

    ADS  Google Scholar 

  115. Perfettini H, Schmittbuhl J, Rice JR, Cocco M (2001) Frictional responseinduced by time‐dependent fluctuations of the normal loading. J Geophys Res 106:435–438

    Google Scholar 

  116. Liu Y, Rice JR (2007) Spontaneous and triggered aseismic deformationtransients in a subduction fault model. J Geophys Res 112:B09404; doi:10.1029/2007JB004930

    ADS  Google Scholar 

  117. Rice JR, Gu JC (1983) Earthquake aftereffects and triggered seismicphenomena. Pure Appl Geophys 121:187–219

    ADS  Google Scholar 

  118. Perfettini H, Schmittbuhl J (2001) Periodic loading on a creepingfault: Implications for tides. Geophys Res Lett 28:435–438

    ADS  Google Scholar 

  119. Shibazaki B, Shimamoto T (2007) Modelling of short‐interval silentslip events in deeper subduction interfaces considering the frictional properties at the unstable‐stable transition regime. Geophys J Int171(1):191–205

    ADS  Google Scholar 

  120. Elsworth D, Day SJ (1999) Flank collapse triggered by intrusion: theCanarian and Cape Verde Archipelagoes. J Volcan Geotherm Res 94:323–340

    ADS  Google Scholar 

  121. Cervelli P et al (2002) The 12 September 1999 upper east rift zone dikeintrusion at Kilauea Volcano, Hawaii. J Geophys Res B: Solid Earth 107:3-1–3-13

    Google Scholar 

  122. Owen S et al (2000) January 30, 1997 eruptive event on Kilauea Volcano,Hawaii, as monitored by continuous GPS. Geophys Res Lett 27:2757–2760

    ADS  Google Scholar 

  123. McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004) Giant landslides,mega‐tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233

    Google Scholar 

  124. Ward S (2002) Slip‐sliding away. Nature415:973–974

    ADS  Google Scholar 

  125. Frye D et al (2006) An Acoustically Linked Moored–Buoy OceanObservatory. EOS Trans AGU 87:213–218

    ADS  Google Scholar 

Download references

Acknowledgments

We thank the Hawaiian Volcano Observatory of the US Geological Survey, in particular AstaMiklius, Maurice Sako, and Kevan Kamibayashi, for their collaboration and efforts in operating the CGPS network at Kilauea. We thank Paul Segall of StanfordUniversity for sharing GPS data from this network. We thank Matt Gould and Nick Witzell of WHOI for engineering support. We thank Capt. Rick Myer and thecrew of the R/V Kilo Moana for their help in deploying and retrieving the extensometers. We thank Mark Schenewerk for help with implementing PAGES. We thankKatie Phillips and Dave Chadwell for helpful discussion and sharing a manuscript in preparation. We thank Cecily Wolfe and Gerard Fryer for stimulatingdiscussion. In particular we thank J. Moore, T. Lowry, and D. Chadwell for thorough and insightful reviews which improved this contribution. This researchwas supported by the Geophysics and Geochemistry programs of the US National Science Foundation, grants from School of Ocean and Earth Science andTechnology at the University of Hawaii, and a grant from the Deep Ocean Exploration Institute of the Woods Hole Oceanographic Institution.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Brooks, B.A., Foster, J.H., McGuire, J.J., Behn, M. (2009). Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_529

Download citation

Publish with us

Policies and ethics