Skip to main content

Synergetics: Basic Concepts

  • Reference work entry
Encyclopedia of Complexity and Systems Science

The Role of Synergetics in Science

In science, we may essentially distinguish between two trends:

  1. 1.

    The accumulation of knowledge

  2. 2.

    Information reduction in the sense of finding general principles, common features.

In physics, such unifying approaches are well known: the unification of magnetism, electricity and, later on, weak and other interactions leading eventually to a unified field theory. General relativity unifies concepts of space, time and gravitation. While these unifications take place at a fundamental level, one may ask whether it is worthwhile to look also for unifications at say more macroscopic or phenomenological levels. One example is thermodynamics, another the theory of phase transitions of systems in thermal equilibrium by means of the renormalization group approach, or the concept of fractals, etc.

The main goal of Synergetics is the search for unifying principles for systems that arecomposed of many individual parts or components, and that may...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Synergetics :

Science of cooperation.

Pattern :

A pattern is essentially an arrangement. It is characterized by the order of the elements of which it is made rather than by the intrinsic nature of these elements (Norbert Wiener).

Self‐organization :

Formation of spatio‐temporal patterns (structures) and/or performance of functions without an “ordering hand”.

State vector :

Set of time- or time‐independent variables that characterize the state of a system.

Evolution equations :

Determine the temporal evolution of the state vector. May be deterministic, stochastic or both.

Control parameter :

One or a set of (mostly externally) fixed parameters in the evolution equations.

Spectrum:

Set of eigenvalues belonging to linear stability equations with boundary conditions.

Stability of a system:

System returns after a (small) perturbation of its state vector into original state.

Instability :

Loss of stability.

Order parameters :

Collective variables that determine the macroscopic behavior of systems.

Slaving principle :

A general theorem that allows the reduction of the variables of a system to order parameters (close to instability).

Trajectory:

Smooth curve q(t) of solution of evolution equation in q‑space.

Attractor :

Region in the state vector space (“q‑space”) to which all neighboring states are attracted in the course of time.

Fixed point , stable:

Point in q space to which all neighboring trajectories converge in course of time.

Limit cycle , stable:

A closed trajectory to which all neighboring trajectories converge.

Probability distribution function:

Function that determines the probability of a random variable r to have fixed value \( { r=r_0 } \).

Fokker Planck equation :

Evolution equation for probability density function, based on drift and diffusion.

Normal form :

Especially simple polynomial expression that still captures the essential features, e. g. of the right hand side of deterministic evolution equations.

Schrödinger picture of quantum mechanics:

In it operators are time‐independent, while the wave‐function (“state vector”) is time‐dependent and determined by the Schrödinger equation.

Heisenberg picture in quantum mechanics:

The state vector is time‐independent, while the operators are time‐dependent and determined by Heisenberg equations of motion.

Fluctuating forces :

Stochastic (random) forces appearing in evolution equations.

Quantum classical correspondence :

Establishes relation between quantum mechanical density matrix and classical quasi‐probability distribution.

Symmetry :

Invariance of a system against specific transformations (e. g. mirror symmetry).

Group:

Set of elements with specific multiplication rules (axioms).

Dynamical system:

System whose state vector changes in the course of time deterministically.

Langevin equation :

Originally: evolution equation for velocity of a Brownian particle subject to damping and fluctuating force.

Generalized Langevin equation:

General evolution equations that contain both a deterministic and a stochastic part (“fluctuating forces”).

Hamilton operator:

Classical Hamilton function, in which variables, e. g. position x and momentum p, are replaced by quantum mechanical operators.

Spatial coordinate (vector x):

in one, two or three dimensions.

$$ \begin{aligned} \Delta &\quad\text{Laplace operator (in 1,2 or 3 dimensions)}\:. \\ \nabla &\quad\text{Vector } \left(\frac{\text{d}} {\text{d} x_1},\frac{\text{d}} {\text{d} x_2},\frac{\text{d}} {\text{d} x_3}\right) \text{ in 1,2 or 3 dimensions}\:. \end{aligned} $$

Literature

Primary Literature

  1. Abraham R, Marsden JE (1978) Foundations of mechanics. Benjamin / Cummings, Reading

    Google Scholar 

  2. Andronov A, Vitt A, Khaikin SE (1966) Theory of oscillators. Pergamon Press, London-Paris

    Google Scholar 

  3. Arnold VI (1963) Russ Math Surv 18:9

    Google Scholar 

  4. Arnold VI (1993) Dynamical systems VI singularity theory 1 v 6 (Encyclopaedia of Mathematical Sciences). Springer, Berlin

    Google Scholar 

  5. Arnold VI, Afrajmovich VS, Il'yashenko, Yu S, Shil'nikov Lf (1999) Bifurcation theory and catastrophe theory. Springer, Berlin

    Google Scholar 

  6. Aronson IS, Kramer L (2002) The world of the complex Ginzburg–Landau equation. Rev Mod Phys 74:99–143

    ADS  Google Scholar 

  7. Babloyantz A (1986) Molecules, dynamics and life: An introduction to Self‐Organization of matter. Wiley, Indianapolis

    Google Scholar 

  8. Bartholomew DJ (1967) Stochastic models for social processes. Wiley, London

    Google Scholar 

  9. Belousov BP (1959) Sb Ref radats Med, Moscow

    Google Scholar 

  10. Bertalanffi L von (1950) Brit J Phil Sci 1:134

    Google Scholar 

  11. Bertalanffi von L (1953) Biophysik des Fließgleichgewichts. Vieweg, Braunschweig

    Google Scholar 

  12. Bodenschatz E, Pesch W, Ahlers G (2000) Annu Rev Fluid Mech 32:709

    MathSciNet  ADS  Google Scholar 

  13. Bogoliubov NN, Mitropolsky YA (1961) Asymptotic methods in the theory of nonlinear oscillations. Hindustan Publ Corp, Delhi

    Google Scholar 

  14. Bonner JT, Barkley PS, Hall EM, Konjin TM, Mason JW, O'Keefe G, Wolfe PB (1972) Devel Biol 20:72

    Google Scholar 

  15. Bray CH (1921) J Am Chem Soc 43:1262

    Google Scholar 

  16. Busse FH (1972) J Fluid Mech 52:1–97

    ADS  Google Scholar 

  17. Bénard H (1900) Ann Chim Phys 7(23):62

    Google Scholar 

  18. Bénard H (1900) Rev Gén Sci Pures Appl 11:1261–1309

    Google Scholar 

  19. Callen HB (1960) Thermodynamics. Wiley, New York

    Google Scholar 

  20. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    Google Scholar 

  21. Chenciner A, Iooss G (1979) Arch Ration Mech Anal 69:109

    MathSciNet  Google Scholar 

  22. Chow S-N, Hale JK (1982) Methods of bifurcation theory. Springer, Berlin

    Google Scholar 

  23. Collet P, Eckmann JP (1980) Iterated maps on the interval as dynamical system. Birkhäuser, Boston

    Google Scholar 

  24. Cross MC, Hohenberg P (1993) Rev Mod Phys 65:851

    ADS  Google Scholar 

  25. DeGiorgio V, Scully MO (1970) Phys Rev A 2:1170

    ADS  Google Scholar 

  26. Eigen M, Schuster P (1977) Naturwissenschaften 64:541, (1978) 65:7, 65:341

    Google Scholar 

  27. Elsasser W (1937) Phys Rev 52:987, (1968) Z Phys 171

    Google Scholar 

  28. Epstein IR, Pojman JA (1998) Introduction to nonlinear chemical dynamics. Oxford University Press, New York

    Google Scholar 

  29. Fantz M, Bestehorn M Friedrich R, Haken H (1993) Phys Lett A 174:48–52

    ADS  Google Scholar 

  30. Feigenbaum MJ (1978) J Stat Phys 19:25

    MathSciNet  ADS  Google Scholar 

  31. Fenstermacher RP, Swinney HL, Gollub JP (1979) J Fluid Mech 94:103

    ADS  Google Scholar 

  32. Field RJ, Korös E, Noyes RM (1972) Am Chem Soc 49:8649

    Google Scholar 

  33. Fife PC (1979) Mathematical aspects of reacting and diffusing systems. Springer, Berlin

    Google Scholar 

  34. Fisher G (1967) Measuring ambiguity. Am J Psychol 80:541–547

    Google Scholar 

  35. Floquet G (1883) Sur les équations différentielles linéaires à coefficients périodiques. Ann Ècole Norm 2(12):47

    MathSciNet  Google Scholar 

  36. Gardiner CW (1994) Handbook of stochastic methods. Springer Series in Synergetics, vol 13. Springer, Berlin

    Google Scholar 

  37. Gerisch G, Hess B (1974) Proc Nat Acad Sci (Wash) 71:2118

    ADS  Google Scholar 

  38. Giaiotti DB, Steinacker R, Stel F (2007) Atmospheric convection. Research and Operational Forecasting Aspects, Cism International Centre for Mechanical Sciences Courses and Lectures. Springer, Wien

    Google Scholar 

  39. Gierer A, Meinhard H (1972) Kybernetik 12:30

    Google Scholar 

  40. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability, and fluctuations. Willey, New York

    Google Scholar 

  41. Gollup J, Benson SV (1979) In: Haken H (ed) Pattern Formation by Dynamic Systems and Pattern Recognition. Springer Series in Synergetics, vol 5. Springer, Berlin

    Google Scholar 

  42. Golubitsky M, Schaeffer D (1988) Singularities and groups in bifurcation theory I, vol 1. Springer, Berlin

    Google Scholar 

  43. Golubitsky M, Stewart I, Schaeffer D (1988) Singularities and groups in bifurcation theory, vol 2. Springer, Berlin

    Google Scholar 

  44. Graham R (1970) Quantum statistics of optical parametric oscillation. In: Kay SM, Maitland A (eds) Quantum Optics. Academic Press, New York

    Google Scholar 

  45. Graham R (1981) Z Phys B 40:149

    ADS  Google Scholar 

  46. Graham R, Haken H (1968) Z Phys 213:420 (1970) 235,237:31,166

    Google Scholar 

  47. Graham R, Haken H (1971) Z Phys 248:289

    MathSciNet  ADS  Google Scholar 

  48. Grossmann S, Thomae S (1977) Z Naturforsch 32A:1353

    MathSciNet  ADS  Google Scholar 

  49. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin

    Google Scholar 

  50. Haake F (1973) In: Springer Tracts in Modern Physics, vol 66. Springer, Berlin, p 98

    Google Scholar 

  51. Haase R (1969) Thermodynamics of irreversible processes. Addison-Wesley, Reading

    Google Scholar 

  52. Hahn W (1967) Stability of motion. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd 138. Springer, Berlin

    Google Scholar 

  53. Haken H (1964) Z Phys 181:96

    ADS  Google Scholar 

  54. Haken H (1970) In: Encyclopedia of Physics, vol XXV/2c: Laser Theory. Springer, Berlin

    Google Scholar 

  55. Haken H (1975) Phys Lett 53A:77

    ADS  Google Scholar 

  56. Haken H (1975) Z Phys B 21:105, B 22:69, B 23:388

    Google Scholar 

  57. Haken H (1979) Light, vol 1, Elements of Quantum Optics. North-Holland Physics Publishing, Amsterdam, New York

    Google Scholar 

  58. Haken H (1985) Light, vol 2, Laser Light Dynamics. North-Holland Physics Publishing, Amsterdam, New York

    Google Scholar 

  59. Haken H (1996) Principles of brain functioning. Springer, Berlin

    Google Scholar 

  60. Haken H (2000) Information and Self‐Organization, 2nd edn. Springer, Berlin

    Google Scholar 

  61. Haken H (2004) Synergetic computers and cognition, 2nd edn. Springer, Berlin

    Google Scholar 

  62. Haken H (2004) Synergetics: An introduction and advanced topics. Springer, Berlin

    Google Scholar 

  63. Haken H, Graham R (1971) Umschau 6:191

    Google Scholar 

  64. Haken H, Kelso S, Bunz H (1985) Biol Cybern 51:347

    MathSciNet  Google Scholar 

  65. Haken H, Wunderlin A (1982) Z Phys B 47:179

    MathSciNet  ADS  Google Scholar 

  66. Hansch D (2002) Evolution und lebenskunst. Grundlagen der psychosynenergetik. Ein Selbstmanagement-Lehrbuch. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  67. Hopf E (1942) Abzweigung einer periodischen lösung eines differentialsystems. Berichte der Mathematisch‐Physikalischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig XCIV 1, Leipzig

    Google Scholar 

  68. Hopf E (1948) Commun Pure Appl Math 1:303

    MathSciNet  Google Scholar 

  69. Horsthemke W, Lefever R (1983) Noise‐Induced transitions, Springer Series in Synergetics, vol 15. Springer, Berlin

    Google Scholar 

  70. Hoyle RG (2006) Pattern formation. Cambridge UP, Cambridge

    Google Scholar 

  71. Iooss G, Joseph DD (1980) Elementary stability and bifurcation theory. Springer, Berlin

    Google Scholar 

  72. Îto K (1969) Stochastic processes. Universitet Matematisk Institut, Aarhus

    Google Scholar 

  73. Jaynes ET (1957) Phys Rev 106:4, 620, Phys Rev 108:171

    MathSciNet  ADS  Google Scholar 

  74. Jaynes ET (1967) In: Delaware Seminar in the Foundations of Physics. Springer, Berlin

    Google Scholar 

  75. Kadanoff LP, Götze W, Hamblen D, Hecht R Lewis EAS, Palcanskas VV, Rayl M, Swift J, Aspnes D, Kane J (1967) Rev Mod Phys 39:395

    Google Scholar 

  76. Kelley A (1967) In: Abraham R, Robbin J (eds) Transversal Mappings and Flows. Benjamin, New York

    Google Scholar 

  77. Kelso JAS (1981) Bull Psyconomic Soc 18:63

    Google Scholar 

  78. Kelso JAS (1995) Dynamic patterns: The self‐organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  79. Kernbach S (2008) Structural self‐organization in multi-agent and multi‐robotic systems, Thesis. Stuttgart University, Logos, Berlin

    Google Scholar 

  80. Kielhöfer, Hansjörg (2004) Bifurcation theory, an introduction with applications to PDES. Springer, Berlin

    Google Scholar 

  81. Kolmogorov AN (1954) Dokl Akad Nauk USSR 98:527

    MathSciNet  Google Scholar 

  82. Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

  83. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Google Scholar 

  84. Kuznetsov, Yuri A (1995) Elements of applied bifurcation theory. Springer, Berlin

    Google Scholar 

  85. Köhler W (1920) Die physischen gestalten in ruhe und im stationären zustand. Vieweg, Braunschweig

    Google Scholar 

  86. Landau LD, Lifshitz IM (1959) In: Course of Theoretical Physics, vol 5, Statistical Physics. Pergamon Press, London‐Paris

    Google Scholar 

  87. Landauer R (1975) Phys Rev A 12:636

    ADS  Google Scholar 

  88. Langevin P (1908) Sur la théorie du movement brownien. CR Acad Sci Paris 146:530

    Google Scholar 

  89. Lorenz EN (1963) J Atmospheric Sci 20:130, 20:448

    Google Scholar 

  90. Lyapunov AM (1906) Sur la masse liquide homogène donnée d'un movement de rotation. Zap Acad Nauk St. Petersburg 1:1

    Google Scholar 

  91. Ma, Tian, Wang, Shouhong (2005) Bifurcation theory and applications. World Scientific, Singapore

    Google Scholar 

  92. Manneville P (1990) Dissipative structures and weak turbulence. Academic Press, San Diego

    Google Scholar 

  93. Marx K (1987) Analytische und numerische behandlung der zweiten instabilität beim Taylor‐Problem der flüssigkeitsdynamik, Thesis. Stuttgart University, Shaker, Aachen

    Google Scholar 

  94. May RM (1976) Nature 261:459

    ADS  Google Scholar 

  95. Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  96. Meinhardt H (1990) The beauty of sea shells. Springer, Berlin

    Google Scholar 

  97. Meystre P, Sargent M (1990) Elements of quantum optics. Springer, Berlin

    Google Scholar 

  98. Mikhailov AS (1993) Foundations of synergetics. In: Distributed Active Systems, II (with AY Loskutov): Complex Patterns. Springer, Berlin

    Google Scholar 

  99. Mills DL (1991) Nonlinear optics basic concepts. Springer, Berlin

    Google Scholar 

  100. Moser J (1967) Math Ann 169:136

    MathSciNet  Google Scholar 

  101. Murdock J (2002) Normal forms and unfoldings for local dynamical systems. Springer, New York

    Google Scholar 

  102. Murray JD (1989) Mathematical biology, 2nd edn 1993, 3rd edn 2002/2003. Springer, Berlin

    Google Scholar 

  103. Nayfeh, Ali H (1993) Method of normal forms. Wiley, New York

    Google Scholar 

  104. Nekorkin VI, Velarde MG (2002) Synergetic phenomena in active lattices. Patterns, waves, solitons, chaos. Springer, Berlin

    Google Scholar 

  105. Newell AC, Whitehead JA (1969) J Fluid Mech 38:279

    ADS  Google Scholar 

  106. Newhouse S, Ruelle D, Takens F (1978) Commun Math Phys 64:35

    MathSciNet  ADS  Google Scholar 

  107. Nicolis G (1995) Introduction to nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  108. Nicolis G, Prigogine I (1977) Self‐organization in non‐equilibrium systems. Wiley, New York

    Google Scholar 

  109. Pauli H (1928) Probleme der modernen physik. In: P Debye (ed) Festschrift zum 60. Geburtstag A Sommerfelds. Hirzel, Leipzig

    Google Scholar 

  110. Pismen LM (1999) Vortices in nonlinear fields. Clarendon Press, Oxford

    Google Scholar 

  111. Pismen LM (2006) Patterns and interfaces in dissipative dynamics. Springer, Berlin

    Google Scholar 

  112. Pliss VA (1964) Izv Akad Nauk SSSR, Mat Ser 28:1297

    MathSciNet  Google Scholar 

  113. Poincaré H (1960) Les methods nouvelles de la méchanique céleste. Gauthier-Villars, Paris. Reprint 1892/99 Dover Publ, New York

    Google Scholar 

  114. Prigogine I, Nicolis G (1967) J Chem Phys 46:3542

    ADS  Google Scholar 

  115. Rabinovich MI, Ezersky AB, Weidmann PD (2000) The dynamics of patterns. World Scientific, Singapore

    Google Scholar 

  116. Risken H (1965) Z Phys 186:85

    ADS  Google Scholar 

  117. Risken H (1989) The Fokker Planck eq. Springer, Berlin

    Google Scholar 

  118. Ruelle D, Takens F (1971) Commun Math Phys 20:167

    MathSciNet  ADS  Google Scholar 

  119. Sargent M, Scully MO, Lamb WE (1974) Laser physics. Addison‐Wesley, Reading

    Google Scholar 

  120. Sattinger DH (1980) Group theoretic methods in bifurcation theory. Lecture Notes Math, vol 762. Springer, Berlin

    Google Scholar 

  121. Schawlow AL, Townes CH (1958) Phys Rev 112:1940

    ADS  Google Scholar 

  122. Schiepek G (1999) Die grundlagen der systemischen therapie. Theorie‐Praxis‐Forschung. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  123. Schleich WP (2001) Quantum optics in phase space. Wiley-VCH, Weinheim

    Google Scholar 

  124. Schmidt E (1908) Zur theorie der linearen und nichtlinearen integralgleichungen, Teil 3. Math Annalen 65:370

    Google Scholar 

  125. Schöll E (2001) Nonlinear spatio‐temporal dynamics and chaos in semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  126. Scully M, Lamb WE (1967) Phys Rev 159:208 (1968) 166:246

    Google Scholar 

  127. Segel LA (1969) J Fluid Mech 38:203

    ADS  Google Scholar 

  128. Sell GR (1979) Arch Ration Mech Anal 69:199

    MathSciNet  Google Scholar 

  129. Shannon CE, Weaver W (1949) The mathematical theory of communication. Univ of Illin Press, Urbana

    Google Scholar 

  130. Smale S (1967) Bull AMS 73:747

    MathSciNet  Google Scholar 

  131. Sounders PT (1980) An introduction to catastrophe theory. Cambridge University Press, Cambridge

    Google Scholar 

  132. Sparrow CT (1982) The Lorenz equations: bifurcations, chaos and strange attractors. Springer, Berlin

    Google Scholar 

  133. Staliunas K, Sanchez‐Morcillo V, Gaul LJ (2003) Transverse patterns in nonlinear optical resonators. Springer, Berlin

    Google Scholar 

  134. Stratonovich RL (1963) Topics in the theory of random noise, vol 1, 1967 vol II. Gordon Breach, New York‐London

    Google Scholar 

  135. Swift J, Hohenberg PC (1977) Phys Rev A 15:319

    ADS  Google Scholar 

  136. Swinney HL, Gollub JP (eds) (1981) Hydrodynamic instabilities and the transition to turbulence, Topics Appl Phys, vol 45. Springer, Berlin

    Google Scholar 

  137. Taylor GI (1923) Phil Trans R Soc Lond A 223:289

    ADS  Google Scholar 

  138. Thom R (1975) Structural stability and morphogenesis. Benjamin, Reading

    Google Scholar 

  139. Turing AM (1952) Phil Trans R Soc Lond B 237:37

    ADS  Google Scholar 

  140. Vavilin VA, Zhabotinsky AM, Yaguzhinsky LS (1967) Oscillatory processes in biological and chemical systems. Moscow Science Publ, Moscow, p 181

    Google Scholar 

  141. Walgraef D (1997) Spatio‐temporal pattern formation. Springer, New York

    Google Scholar 

  142. Walls DF, Milburn GJ (1994) Quantum optics. Springer, Berlin

    Google Scholar 

  143. Weidlich W (2000) Sociodynamics. A systematic approach to mathematical modelling in the social sciences. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  144. Weidlich W, Haake F (1965) Z Physik 186:203

    ADS  Google Scholar 

  145. Wigner EP (1932) Phys Rev 40:749

    ADS  Google Scholar 

  146. Wilson KG, Kogut J (1974) Phys Rep 12 C:75

    Google Scholar 

  147. Wolpert L (1969) J Theor Biol 25:1

    Google Scholar 

  148. Wunderlin A, Haken (1981) Z Phys B 44:135

    MathSciNet  ADS  Google Scholar 

  149. Zaikin AN, Zhabotinsky AM (1970) Nature 225:535

    ADS  Google Scholar 

Books and Reviews

  1. Springer Series in Synergetics. Founded by Haken H (1977) vols 1–ca 100. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Haken, H. (2009). Synergetics: Basic Concepts. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_533

Download citation

Publish with us

Policies and ethics