Skip to main content

System Regulation and Design, Geometric and Algebraic Methods in

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition

A central problem in control theory is the design offeedback controllers so as to have certain outputs ofa given plant to trackprescribed reference trajectories. In any realistic scenario,this control goal has to be achieved in spite of a goodnumber of phenomena which would cause the system to behavedifferently than expected. These phenomena could be endogenous, for instanceparameter variations, or exogenous, such as additional undesiredinputs affecting the behavior of the plant. In numerous designproblems, exogenous inputs are not available for measurement,nor are known ahead of time, but rather can only be seen asunspecified members of a given family of functions.Embedding a suitable “internal model” of sucha family in the controller is a design strategy thathas proven to be quite successful in handling uncertainties inthe controlled plant as well as in the exogenous inputs.

Introduction

The problem of controlling the output of a system soas to achieve asymptotic tracking...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Exosystem:

A dynamical system modeling the set of all exogenous inputs (command/disturbances) affecting a controlled plant.

Internal model:

A model of the exogenous inputs (command/disturbances) affecting a controlled plant, embedded in the interior of the controller.

Generalized tracking problem:

The problem of designing a controller able to asymptotically track/reject any exogenous command/disturbance in a fixed set of functions.

Observer:

A device designed to asymptotically track the state of a dynamical system on the basis of measured observations.

Steady state:

A family of behaviors, in a dynamical system, that are asymptotically approached, as actual time tends to infinity or as initial time tends to minus infinity.

Bibliography

  1. AndrieuV, Praly L (2006) On the existence ofa Kazantis-Kravaris/Luenberger observer. SIAM J Contr Optim45:432–456

    MathSciNet  Google Scholar 

  2. BirkhoffGD (1927) Dynamical systems. American Mathematical Society,Providence

    Google Scholar 

  3. ByrnesCI, Delli Priscoli F, Isidori A, Kang W (1997) Structurallystable output regulation of nonlinear systems. Automatica33:369–385

    MathSciNet  Google Scholar 

  4. ByrnesCI, Isidori A (2003) Limit Sets, Zero dynamics and internalmodels in the problem of nonlinear output regulation. IEEE TransAutom Contr 48:1712–1723

    MathSciNet  Google Scholar 

  5. ByrnesCI, Isidori A (2004) Nonlinear internal models for outputregulation. IEEE Trans Autom Contr49:2244–2247

    MathSciNet  Google Scholar 

  6. ByrnesCI, Isidori A, Praly L (2003) On the asymptotic properties ofa system Arising in non-equilibrium theory of outputregulation, preprint of the Mittag-Leffler Institute. 18,Stockholm

    Google Scholar 

  7. IsidoriA, Byrnes CI (2007) The steady-state response ofa nonlinear system: ideas, tools and applications,preprint

    Google Scholar 

  8. DavisonEJ (1976) The robust control of a servomechanism problemfor linear time-invariant multivariable systems. IEEE TransAutom Contr AC-21:25–34

    MathSciNet  Google Scholar 

  9. DelliPriscoli F, Marconi L, Isidori A (2006) A new approach toadaptive nonlinear regulation. SIAM J Contr Optim45:829–855

    MathSciNet  Google Scholar 

  10. FrancisBA (1977) The linear multivariable regulator problem. SIAM JContr Optim 14:486–505

    MathSciNet  Google Scholar 

  11. FrancisBA, Wonham WM (1976) The internal model principle of controltheory. Automatica12:457–465

    MathSciNet  Google Scholar 

  12. GauthierJP, Kupka I (2001) Deterministic observation theory andapplications. Cambridge University Press,Cambridge

    Google Scholar 

  13. HahnW (1967) Stability of motions. Springer, NewYork

    Google Scholar 

  14. HaleJK, Magalhães LT, Oliva WM (2002) Dynamics in infinitedimensions. Springer, New York

    Google Scholar 

  15. HuangJ, Lin CF (1994) On a robust nonlinear multivariableservomechanism problem. IEEE Trans Autom Contr39:1510–1513

    MathSciNet  Google Scholar 

  16. HuangJ, Rugh WJ (1990) On a nonlinear multivariableservomechanism problem. Automatica26:963–972

    MathSciNet  Google Scholar 

  17. IsidoriA (1995) Nonlinear Control Systems. Springer,London

    Google Scholar 

  18. IsidoriA (2000), A tool for semiglobal stabilization of uncertainnon-minimum-phase nonlinear systems via output feedback. IEEETrans Autom ContrAC-45:1817–1827

    Google Scholar 

  19. IsidoriA, Byrnes CI (1990) Output regulation of nonlinear systems. IEEETrans Autom Contr 25:131–140

    MathSciNet  Google Scholar 

  20. IsidoriA, Marconi L, Serrani A (2003) Robust autonomous guidance: Aninternal model-based approach. Springer,London

    Google Scholar 

  21. KhalilH (1994) Robust servomechanism output feedback controllers forfeedback linearizable systems. Automatica30:587–1599

    MathSciNet  Google Scholar 

  22. MarconiL, Praly L, Isidori A (2006) Output stabilization via nonlinearluenberger observers. SIAM J Contr Optim45:2277–2298

    MathSciNet  Google Scholar 

  23. SerraniA, Isidori A, Marconi L (2001) Semiglobal nonlinear outputregulation with adaptive internal model. IEEE Trans Autom Contr46:1178–1194

    MathSciNet  Google Scholar 

  24. TeelAR, Praly L (1995) Tools for semiglobal stabilization by partialstate and output feedback. SIAM J Control Optim33:1443–1485

    MathSciNet  Google Scholar 

  25. WillemsJC (1991) Paradigms and puzzles in the theory of dynamicalsystems, IEEE Transaction on Automatic Control36:259–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Isidori, A., Marconi, L. (2009). System Regulation and Design, Geometric and Algebraic Methods in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_545

Download citation

Publish with us

Policies and ethics