Skip to main content

Cellular Automata Modeling of Complex Biochemical Systems

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Cellular automata are discrete, agent-based models that can be used for the simulation of complex systems [1]. They are composed of:

  • A grid of cells.

  • A set of ingredients called agents that can occupy the cells.

  • A set of local rules governing the behaviors of the agents.

  • Specified initial conditions.

Once these components are defined, a simulation can be carried out. During the simulation the system evolves via a series of discrete time-steps, or iterations, in which the rules are applied to all of the ingredients of the system and the configuration of the system is regularly updated. A striking feature of the cellular automata (CA) models is that they treat not only the ingredients, or agents, of the model as discrete entities, as do the traditional models of physics and chemistry, but in the CA models time (iterations) and space (the cells) are also regarded as discrete, in contrast to the continuous forms assumed for these variables in the traditional,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Agents:

Ingredients under study occupying the cells in the grid.

Asynchronous:

Each cell in turn, at random responds to a rule.

Cells:

Sections of the grid in which the agents exist.

Gravity:

The relative relationship of two agents within the frame of a grid with opposite bound edges.

Grid:

The frame containing the cells and the agents.

Movement:

The simulation of agent movement between cells accomplished by the disappearance of an agent in a cell and the appearance of that agent in an adjacent cell.

Neighborhood:

The cells immediately touching a given cell in the grid.

Rules:

Statements of actions to be taken by an agent under certain conditions. They may take the form of a probability of such an action.

Synchronous:

All cells in a grid exercise a simultaneous response to a rule.

Bibliography

Primary Literature

  1. Kier LB, Seybold PG, Cheng C-K (2005) Modeling chemical systems using cellular automata. Springer, Dordrecht

    Google Scholar 

  2. Von Neumann J (1966) Burks A (ed) Theory of self‐reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  3. Ulam SM (1952) Proc Int Congr Math 2:264, held in 1950

    Google Scholar 

  4. Ulam SM (1976) Adventures of a mathematician. Charles Scribner’s Sons, New York

    Google Scholar 

  5. Tofolli T, Margolas N (1987) Cellular automata machines: A new environment for modeling. MIT Press, Cambridge

    Google Scholar 

  6. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    Google Scholar 

  7. Kapral R, Showalter K (1995) Chemical waves and patterns. Kluwer, Boston

    Google Scholar 

  8. Ermentrout GB, Edelstein‐Keshet L (1993) J Theoret Biol 160:97–133

    Google Scholar 

  9. Grimm V, Revilla E, Berger U et al (2005) Science 310:987–991

    ADS  Google Scholar 

  10. Wu-Pong S, Cheng C-K (1999) Pharmacokinetic simulations using cellular automata in a pharmacokinetics course. Am J Pharm Educ 63:52–55

    Google Scholar 

  11. Moreira N (2006) In pixels and in health. Sci News Jan 21:40–44

    Google Scholar 

  12. Batty M (2005) Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. MIT Press, Cambridge

    Google Scholar 

  13. Kohler TA, Gumerman GJ (2000) Dynamics in human and primate societies: Agent-based modelling of social and spatial processes. Oxford University Press, New York

    Google Scholar 

  14. White R (2005) Modelling multi-scale processes in a cellular automata framework. In: Portugali J (ed) Complex artificial environments. Springer, New York, pp 165–178

    Google Scholar 

  15. Kier LB, Cheng C-K (1994) A cellular automata model of water. J Chem Inf Comp Sci 34:647–654

    Google Scholar 

  16. Kier LB, Cheng C-K (1994) A cellular automata model of an aqueous solution. J Chem Inf Comp Sci 34:1334–1341

    Google Scholar 

  17. Kier LB, Cheng C-K, Testa B (1995) A cellular automata model of the hydrophobic effect. Pharm Res 12:615–622

    Google Scholar 

  18. Kier LB, Cheng C-K (1995) A cellular automata model of dissolution. Pharm Res 12:1521–1528

    Google Scholar 

  19. Kier LB, Cheng C-K, Testa B (1997) A cellular automata model of diffusion in aqueous systems. J Pharm Sci 86:774–781

    Google Scholar 

  20. Kier LB, Cheng C-K, Seybold PG (2001) A cellular automata model of aqueous systems. Revs Comput Chem 17:205–238

    Google Scholar 

  21. Cheng C-K, Kier LB (1995) A cellular automata model of oil-water partitioning. J Chem Inf Comput Sci 35:1054–1061

    Google Scholar 

  22. Kier LB, Cheng C-K, Tute M, Seybold PG (1998) A cellular automata model of acid dissociation. J Chem Inf Comp Sci 38:271–278

    Google Scholar 

  23. Seybold PG, Kier LB, Cheng C-K (1997) J Chem Inf Comput Sci 37:386–391

    Google Scholar 

  24. Neuforth A, Seybold PG, Kier LB, Cheng C-K (2000) Cellular automata models of kinetically and thermodynamically controlled reactions, vol A. Int J Chem Kinetic 32:529–534

    Google Scholar 

  25. Seybold PG, Kier LB, Cheng C-K (1998) Stochastic cellular automata models of molecular excited state dynamics. J Phys Chem A 102:886–891

    Google Scholar 

  26. Seybold PG, Kier LB, Cheng C-K (1999) Aurora Borealis: Stochastic cellular automata simulation of the excited state dynamics of Oxygen atoms. Int J Quantum Chem 75:751–756

    ADS  Google Scholar 

  27. Okabe H (1978) Photochemistry of small molecules. Wiley, New York, p 370

    Google Scholar 

  28. Moore J, Seybold PG; To be published personal correspondence

    Google Scholar 

  29. Kier LB, Cheng C-K, Testa B (1996) A cellular automata model of enzyme kinetics. J Molec Graph 14:227–234

    Google Scholar 

  30. Kier LB, Bonchev D, Buck G (2005) Modeling biochemical networks: A cellular automata approach. Chem Biodiv 2:233–43

    Google Scholar 

  31. Kier LB, Cheng C-K (2000) A cellular automata model of an anticipatory system. J Molec Graph Model 18:29–35

    Google Scholar 

  32. Kier LB, Cheng C-K, Testa B (1996) Cellular automata model of micelle formation. Pharm Res 13:1419–1426

    Google Scholar 

  33. Kier LB Cheng C-K (1997) A cellular automata model of membrane permeability. J Theor Biol 186:75–85

    Google Scholar 

  34. Kier LB, Cheng C-K, Karnes HT (2000) A cellular automata model of chromatography. Biomed Chrom 14:530–539

    Google Scholar 

  35. Bonchev D (2003) Complexity of protein–protein interaction networks, complexes and pathways. In: Conn M (ed) Handbook of proteomics methods. Humana, New York, pp 451–462

    Google Scholar 

  36. Kier LB (2007) Water as a complex system: Its role in ligand diffusion, general anesthesia, and sleep. Chem Biodiv4:2473–2479

    Google Scholar 

Selected Bibliography of Works on Cellular Automata

  1. At this time thousands of scientific articles have been published de-

    Google Scholar 

  2. scribing cellular automata studies of topics ranging from applica-

    Google Scholar 

  3. tions dealing with physical and biological systems to investiga-

    Google Scholar 

  4. tions of traffic control and topics in the social sciences. It would be

    Google Scholar 

  5. impossible to describe all of these studies within a limited space,

    Google Scholar 

  6. but it may be useful to provide a short list of representative investi-

    Google Scholar 

  7. gations on a limited variety of topics, permitting starting points for

    Google Scholar 

  8. readers who might wish to further examine applications in these

    Google Scholar 

  9. more narrow subjects. Below we give a short selection of publica-

    Google Scholar 

  10. tions, some of which, although not explicitly referring to CA, cover

    Google Scholar 

  11. the same approach or a related approach.

    Google Scholar 

Artificial Life

  1. Adami C (1998) An introduction to artificial life. Springer, New York

    Google Scholar 

  2. Langton CG, Farmer JD, Rasmussen S, Taylor C (1992) Artificial life, vol II. Addison‐Wesley, Reading

    Google Scholar 

Biological Applications (General)

  1. Maini PK, Deutsch A, Dormann S (2003) Cellular automaton modeling of biological pattern formation. Birkhäuser, Boston

    Google Scholar 

  2. Sigmund K (1993) Games of life: Explorations in ecology, evolution, and behaviour. Oxford University Press, New York

    Google Scholar 

  3. Solé R, Goodman B (2000) Signs of life: How complexity pervades biology. Basic Books, New York; A tour-de-force general introduction to biological complexity, with many examples

    Google Scholar 

Books

  1. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

    Google Scholar 

  2. Gaylord RJ, Nishidate K (1996) Modeling nature: Cellular automata simulations with Mathematica®. Telos, Santa Clara

    Google Scholar 

  3. Griffeath D, Moore C (2003) New constructions in cellular automata. In: Santa Fe Institute Studies in the Sciences of Complexity Proceedings. Oxford University Press, New York

    Google Scholar 

  4. Ilachinski A (2001) Cellular automata: A discrete universe. World Scientific, Singapore

    Google Scholar 

  5. Kier LB, Seybold PG, Cheng C-K (2005) Modeling chemical systems using cellular automata. Springer, Dodrecht

    Google Scholar 

  6. Manneville P, Boccara N, Vishniac GY, Bidaux R (1990) Cellular automata and modeling of complex physical systems. Springer, New York, pp 57–70

    Google Scholar 

  7. Schroeder M (1991) Fractals, chaos, power laws. WH Freeman, New York

    Google Scholar 

  8. Toffoli T, Margolus N (1987) Cellular automata machines: A new environment for modeling. MIT Press, Cambridge

    Google Scholar 

  9. Wolfram S (1994) Cellular automata and complexity: Collected papers. Westview Press, Boulder

    Google Scholar 

  10. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    Google Scholar 

Emergent Properties

  1. Gruner D, Kapral R, Lawniczak AT (1993) Nucleation, domain growth, and fluctuations in a bistable chemical system. J Chem Phys 96:2762–2776

    Google Scholar 

  2. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554–2558

    MathSciNet  ADS  Google Scholar 

  3. Kauffman S (1984) Emergent properties in random complex automata. Physica D 10:145–156

    MathSciNet  ADS  Google Scholar 

  4. Ottino JM (2004) Engineering complex systems. Nature 427:399

    ADS  Google Scholar 

Evolution

  1. Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Physica D 22:50–67

    MathSciNet  Google Scholar 

  2. Solé RV, Bascompté J, Manrubia SC (1996) Extinctions: Bad genes or weak chaos? Proc Roy Soc Lond B 263:1407–1413

    Google Scholar 

  3. Solé RV, Manrubia SC (1997) Criticality and unpredictability in macroevolution. Phys Rev E 55:4500–4508

    Google Scholar 

  4. Solé RV, Manrubia SC, Benton M, Bak P (1997) Self‐similarity of extinction statistics in the fossil record. Nature 388:764–767

    Google Scholar 

  5. Solé RV, Montoya JM, Erwin DH (2002) Recovery from mass extinction: Evolutionary assembly in large-scale biosphere dynamics. Phil Trans Royal Soc 357:697–707

    Google Scholar 

Excited State Phenomena

  1. Seybold PG, Kier LB, Cheng C-K (1998) Stochastic cellular automata models of molecular excited‐state dynamics. J Phys Chem A 102:886–891; Describes general cellular automata models of molecular excited states

    Google Scholar 

  2. Seybold PG, Kier LB, Cheng C-K (1999) Aurora Borealis: Stochastic cellular automata simulations of the excited‐state dynamics of Oxygen atoms. Int J Quantum Chem 75:751–756; This paper examines the emissions and excited‐state transitions of atomic Oxygen responsible for some of the displays of the Aurora Borealis

    ADS  Google Scholar 

First-Order Chemical Kinetics

  1. Hollingsworth CA, Seybold PG, Kier LB, Cheng C-K (2004) First-order stochastic cellular automata simulations of the Lindemann mechanism. Int J Chem Kinetic 36:230–237

    Google Scholar 

  2. Neuforth A, Seybold PG, Kier LB, Cheng C-K (2000) Cellular automata models of kinetically and thermodynamically controlled reactions. Int J Chem Kinetic 32:529–534; A study of kinetic and thermodynamic reaction control

    Google Scholar 

  3. Seybold PG, Kier LB, Cheng C-K (1997) Simulation of first-order chemical kinetics using cellular automata. J Chem Inf Comput Sci 37:386–391; This paper illustrates a number of first-order cellular automata models

    Google Scholar 

Fluid Flow

  1. Malevanets A, Kapral R (1998) Continuous‐velocity lattice‐gas model for fluid flow. Europhys Lett 44:552

    ADS  Google Scholar 

Game of Life

  1. Alpert M (1999) Not just fun and games. Sci Am 40:42; A profile of John Horton Conway

    Google Scholar 

  2. Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Amer 223:120–123

    Google Scholar 

  3. Gardner M (1971) On cellular automata, self-reproduction, the Garden of Eden and the game of “life”. Sci Amer 224:112–117"

    Google Scholar 

  4. Note: There are many examples on the web of applets that allow

    Google Scholar 

  5. you to play the Game of Life. Since these come and go, you are

    Google Scholar 

  6. urged to locate them using a search engine.

    Google Scholar 

Geology

  1. Barton CC, La Pointe PR (1995) Fractals in petroleum geology and earth processes. Plenum, New York

    Google Scholar 

  2. Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, New York

    Google Scholar 

Historical Notes

  1. Ulam SM (1952) Random processes and transformations. Proc Int Congr Math 2:264, held in 1950

    Google Scholar 

  2. Ulam SM (1976) Adventures of a mathematician. Charles Scribner’s Sons, New York

    Google Scholar 

  3. Von Neumann J (1966) Burks A (ed) Theory of self‐replicating automata. University of Illinois Press, Urbana

    Google Scholar 

  4. Zuse K (1982) The computing universe. Int J Theoret Phys 21:589

    Google Scholar 

Liquid Phase Interactions

  1. Cheng C-K, Kier LB (1995) A cellular automata model of oil-water partitioning. J Chem Info Comput Sci 35:1054–1059

    Google Scholar 

  2. Kier LB, Cheng C-K, Testa B (1996) A cellular automata model of micelle formation. Pharm Res 13:1419–1422

    Google Scholar 

  3. Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110:8605–8613

    ADS  Google Scholar 

Oscillations

  1. Chavez F, Kapral R (2002) Oscillatory and chaotic dynamics in compartmentalized geometries. Phys Rev E 65:056203

    ADS  Google Scholar 

  2. Chavez F, Kapral R, Rousseau G, Glass L (2001) Scroll waves in spherical shell geometries. Chaos 11:757

    MathSciNet  ADS  Google Scholar 

  3. Goryachev A, Strizhak P, Kapral R (1997) Slow manifold structure and the emergence of mixed-mode oscillations. J Chem Phys 107:2881

    ADS  Google Scholar 

  4. Hemming C, Kapral R (2002) Phase front dynamics in inhomogeneously forced oscillatory systems. Physica A 306:199

    ADS  Google Scholar 

Pattern Formation

  1. Kapral R, Showalter K (1994) Chemical waves and patterns. Kluwer, Dordrecht

    Google Scholar 

  2. Parrish JK, Edelstein‐Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284:99–101

    Google Scholar 

  3. Veroney JP, Lawniczak AT, Kapral R (1996) Pattern formation in heterogeneous media. Physica D 99:303–317

    Google Scholar 

Physics Applications

  1. Signorini J (1990) Complex computing with cellular automata. In: Manneville P, Boccara N, Vishniac GY, Bidaux R (eds) Cellular automata and modeling of complex physical systems. Springer, New York, pp 57–70

    Google Scholar 

  2. Toffoli T (1984) Cellular automata as an alternative (rather than an approximation of) differential equations in modeling physics. Physica D 10:117–127

    MathSciNet  ADS  Google Scholar 

  3. Vichniac GY (1984) Simulating physics with cellular automata. Physica D 10:96–116

    MathSciNet  ADS  Google Scholar 

Population Biology and Ecology

  1. Bascompté J, Solé RV (1994) Spatially‐induced bifurcations in single species population dynamics. J Anim Ecol 63:256–264

    Google Scholar 

  2. Bascompté J, Solé RV (1995) Rethinking complexity: Modelling spatiotemporal dynamics in ecology. Trends Ecol Evol 10:361–366

    Google Scholar 

  3. Bascompté J, Solé RV (1996) Habitat fragmentation, extinction thresholds in spatialy explicit models. J Anim Ecol 65:465

    Google Scholar 

  4. Deutsch A, Lawniczak AT (1999) Probabilistic lattice models of collective motion, aggregation: From individual to collective dynamics. J Math Biosci 156:255–269

    MathSciNet  Google Scholar 

  5. Fuks H, Lawniczak AT (2001) Individual‐based lattice models for the spatial spread of epidemics. Discret Dyn Nat Soc 6(3):1–18

    Google Scholar 

  6. Gamarra JGP, Solé RV (2000) Bifurcations, chaos in ecology: Lynx returns revisited. Ecol Lett 3:114–121

    Google Scholar 

  7. Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical, computational challenges in population biology, ecosystems science. Science 275:334–343

    Google Scholar 

  8. Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412

    Google Scholar 

  9. Nowak MA, Sigmund K (2004) Population dynamics in evolutionary ecology. In: Keinan E, Schechter I, Sela M (eds) Life sciences for the 21st century. Wiley-VCH, Cambridge, pp 327–334

    Google Scholar 

  10. Solé RV, Alonso D, McKane A (2000) Connectivity, scaling in S‑species model ecosystems. Physica A 286:337–344

    Google Scholar 

  11. Solé RV, Manrubia SC, Kauffman S, Benton M, Bak P (1999) Criticality, scaling in evolutionary ecology. Trends Ecol Evol 14:156–160

    Google Scholar 

  12. Solé RV, Montoya JM (2001) Complexity, fragility in ecological networks. Proc Roy Soc 268:2039–2045

    Google Scholar 

Random Walks

  1. Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  2. Hayes B (1988) How to avoid yourself. Am Sci 86:314–319

    Google Scholar 

  3. Lavenda BH (1985) Brownian motion. Sci Am 252(2):70–85

    MathSciNet  ADS  Google Scholar 

  4. Shlesinger MF, Klafter J (1989) Random walks in liquids. J Phys Chem 93:7023–7026

    Google Scholar 

  5. Slade G (1996) Random walks. Am Sci 84:146–153

    ADS  Google Scholar 

  6. Weiss GH (1983) Random walks, their applications. Am Sci 71:65–71

    ADS  Google Scholar 

Reviews

  1. Kapral R, Fraser SJ (2001) Chaos, complexity in chemical systems. In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics, physical chemistry, vol III. Institute of Physics Publishing, Philadelphia, p 2737

    Google Scholar 

  2. Kier LB, Cheng C-K, Testa (1999) Cellular automata models of biochemical phenomena. Future Generation Compute Sci 16:273–289

    Google Scholar 

  3. Kier LB, Cheng C-K, Seybold PG (2000) Cellular automata models of chemical systems. SAR QSAR Environ Res 11:79–102

    Google Scholar 

  4. Kier LB, Cheng C-K, Seybold PG (2001) Cellular automata models of aqueous solution systems. In: Lipkowitz KM, Boyd DB (eds) Reviews in computational chemistry, vol 17. Wiley-VCH, New York, pp 205–225

    Google Scholar 

  5. Turcotte DL (1999) Self‐organized criticality. Rep Prog Phys 62:1377–1429

    ADS  Google Scholar 

  6. Wolfram S (1983) Cellular automata. Los Alamos Sci 9:2–21

    Google Scholar 

Second‐Order Chemical Kinetics

  1. Boon JP, Dab D, Kapral R, Lawniczak AT (1996) Lattice‐gas automata for reactive systems. Phys Rep 273:55–148

    MathSciNet  ADS  Google Scholar 

  2. Chen S, Dawson SP, Doolen G, Jenecky D, Lawiczak AT (1995) Lattice methods for chemically reacting systems. Comput Chem Engr 19:617–646

    Google Scholar 

Self‐Organized Criticality

  1. Bak P (1996) How nature works. Springer, New York

    Google Scholar 

  2. Bak P, Tang C, Wiesenfeld K (1987) Self‐organized criticality: An explanation for 1/f noise. Phys Rev Lett 59:381–384; A classic paper introducing the “sandpile” cellular automaton

    MathSciNet  ADS  Google Scholar 

  3. Turcotte DL (1999) Self‐organized criticality. Rep Prog Phys 62:1377–1429

    ADS  Google Scholar 

Social Insect Behavior

  1. Cole BJ (1991) Short-term activity cycles in ants: Generation of periodicity by worker inaction. Amer Nat 137:144–259

    Google Scholar 

  2. Cole BJ (1996) Mobile cellular automata models of ant behavior: Movement activity of Leptothorax Allardycei. Amer Nat 148:1–15

    ADS  Google Scholar 

  3. Deneubourg J-L, Goss S, Franks NR, Pasteels JM (1989) The blind leading the blind: Modeling chemically mediated Army ant raid patterns. J Insect Behav 2:719–772

    Google Scholar 

  4. Goss S, Deneubourg J-L (1988) Autocatalysis as a source of synchronized rhythmical activity in social insects. Insectes Sociaux 35:310–315

    Google Scholar 

  5. Solé RV, Miramontes O, Goodwin BC (1993) Oscillations, chaos in ant societies. J Theoret Biol (1993) 161:343–357

    Google Scholar 

Social Sciences

  1. Gaylord RJ (1998) D’Andria LJ (1998) Simulating society: A Mathematica toolkit for modeling socioeconomic behavior. Springer/Telos, New York

    Google Scholar 

  2. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

Traffic Rules

  1. Huang P-H, Kong L-J, Liu M-R (2002) A study of a main-road cellular automata traffic flow model. Chin Phys 11:678–683

    ADS  Google Scholar 

  2. Nagel K, Wolf DE, Wagner P, Simon P (1998) Two-lane rules for cellular automata: A systematic approach. Phys Rev E 58:1425–1437

    ADS  Google Scholar 

Water

  1. Kier LB, Cheng C-K (1994) A cellular automata model of water. J Chem Info Comput Sci 34:647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Kier, L.B., Seybold, P.G. (2009). Cellular Automata Modeling of Complex Biochemical Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_56

Download citation

Publish with us

Policies and ethics