Skip to main content

Tunneling Through Quantum Dots with Discrete Symmetries

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Electrons may be confined within a nano-size quantum box by various methods. Thefirst example of such confinement was demonstrated in the studies of optical properties ofsemiconductor precipitates in glasses [10]. Later on such confinement was realized in planarquantum dots. These dots are fabricated in semiconductor heterostructures, where the electronsalready confined in a two‐dimensional layer between two semiconductors (usuallyGaAs/GaAlAs) are locked in a nano-size puddle by electrostatic potential created byelectrodes superimposed on the heterostructure (see [25,51]for a description of the early stage of the physics of quantum dots). QDs may be alsoprepared by means of colloidal synthesis [4], grown as self‐assembledstructures of semiconductor droplets on a strained surface ofanother semiconductor [36], etc. Inparticular, quantum dots may be fabricated in a form of vertical structures possessingcylindrical symmetry [32].

Discrete...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Quantum dot:

Quantum dot (QD) is an element of artificial nanostructures. It arises in a situation when a finite number of electrons is confined in a puddle of \( { 10^{0} } \)\( { 10^{2} } \) nanometer size either by means of external electrical potential imposed on semiconductor heterostructure or in a process of formation of non‐equilibrium self‐assembled structures. The electron wavelength in a QD is comparable with its size. As a result all energy levels are spatially quantized like in atoms or molecules. Quantum systems with fully quantized energy levels are defined as zero‐dimensional nano‐objects. Complex quantum dots consist of several QDs organized in linear or ring structures.

Discrete symmetry:

Group theory classifies all physical objects in accordance with their symmetry properties relative to symmetry transformations (rotations and translations) in space and time. These operations may be continuous or discrete. In the latter case one speaks about discrete rotational or translational symmetry.

Dynamical symmetry:

Dynamical symmetry characterizes not only the eigenstates of a Hamiltonian, but also the symmetry of transition between the states belonging to different irreducible representation of the symmetry group of the Hamiltonian under external dynamical perturbation. Dynamical symmetry may be continuous and discrete or combine both types of symmetry operations.

Kondo effect:

Kondo effect is the many particle phenomenon which arises in magnetically doped metals due to exchange scattering of metallic electrons on localized magnetic moments of impurities. Multiple electron scattering processes result in dynamical screening of impurity magnetic moment. As a result, impurity‐related electrical resistivity has a minimum at some temperature, and reaches the unitarity limit at \( { T\to 0 } \). This limit corresponds to maximum backward electron scattering. Kondo effect exists also in tunneling through small QDs. In this case the unitarity limit corresponds to maximum tunnel transparency of QD.

Quantum tunneling:

Quantum tunneling of electrons through potential barriers arises at low temperatures, where all overbarrier activation processes are frozen. In nanostructures this type of transport is realized on the interfaces between different materials forming nanostructure or in especially designed tunneling channels.

Bibliography

Primary Literature

  1. Aono T (2007) Two‐impurity Kondo problem under Aharonov–Bohm and Aharonov–Casher effects. Phys Rev B 76:073304

    ADS  Google Scholar 

  2. Babic B, Kontos T, Schonenberger C (2004) Kondo effect in carbon nanotubes at half filling. Phys Rev B 70:235419

    ADS  Google Scholar 

  3. Babic B, Schonenberger C (2004) Observation of Fano resonances in single‐wall carbon nanotubes. Phys Rev B 70:195408

    ADS  Google Scholar 

  4. Bawendi MG et al (1990) Electronic structure and photoexcited‐carrier dynamics in nanometer‐size CdSe clusters. Phys Rev Lett 65:1623–1626

    ADS  Google Scholar 

  5. Bergeret FS et al (2006) Interplay between Josephson effect and magnetic interactions in double quantum dots. Phys Rev B 74:132505

    ADS  Google Scholar 

  6. Bimberg D, Grundman M, Ledentsov NN (1999) Quantum Dot Heterostructures. Wiley, New York

    Google Scholar 

  7. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversiojn layers. J Phys C: Solid State Phys 17:6039–6045

    ADS  Google Scholar 

  8. Craig NJ et al (2004) Tunable nonlocal spin control in coupled‐quantum‐dot system. Science 304:565–567

    ADS  Google Scholar 

  9. Delgado F et al (2007) Theory of spin, electronic and transport properties of the lateral triplet quantum dot molecule in a magnetic field. Phys Rev B 76:115332

    ADS  Google Scholar 

  10. Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett 40:1136–1139

    ADS  Google Scholar 

  11. Eto M (2001) Mean-field theory of the Kondo effect in quantum dots with an even number of electrons. Phys Rev B 64:085322

    ADS  Google Scholar 

  12. Eto M (2005) Enhancement of Kondo effect in Multilevel quantum dots. J Phys Soc Jpn 74:95–102

    ADS  MATH  Google Scholar 

  13. Fulde P (1995) Electron Correlations in Molecules and Solids, Chap 12, 3rd edn. Springer, Heidelberg

    Google Scholar 

  14. Garg A (1993) Topologically quenched tunnel splitting in spin systems without Kramers degeneracy. Europhys Lett 22:205–210

    ADS  Google Scholar 

  15. Glazman LI, Raikh ME (1988) Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett 47:452–455

    ADS  Google Scholar 

  16. Guadreau L et al (2006) Stability diagram of a few‐electron triple dot. Phys Rev Lett 97:036807

    ADS  Google Scholar 

  17. Nojiri H, Ishikawa E, Yamase T (2005) Effect of spin chirality on magnetization in triangular rings. Progr Theor Phys Suppl No 159:292–296

    ADS  Google Scholar 

  18. Hofmann F et al (1995) Single electron switching in a parallel quantum dot. Phys Rev B 51:13872–13875

    ADS  Google Scholar 

  19. Hofstatter W, Schoeller H (2002) Quantum phase transitions in a multilevel dot. Phys Rev Lett 88:016803

    ADS  Google Scholar 

  20. Imamura H, Bruno P, Utsumi Y (2004) Twisted exchange interaction between localized spins embedded in a one- and two‐dimensional electron gas with Rashba spin-orbit coupling. Phys Rev B 69:121303

    ADS  Google Scholar 

  21. Izumida W, Sakai O, Shimizu Y (1997) Many body effects on electron tunneling through quantum dots in and Aharonov–Bohm circuit. J Phys Soc Jpn 66:717–726

    ADS  Google Scholar 

  22. Jamneala T, Madhavan V, Crommie MF (2001) Kondo response of a single antiferromagnetic chromium trimer. Phys Rev Lett 87:256804

    ADS  Google Scholar 

  23. Joault B, Santoro G, Tagliacozzo A (2000) Sequential magnetotunneling in a vertical quantum dot tuned at the crossing to higher spin states. Phys Rev B 61:10242–10246

    ADS  Google Scholar 

  24. Kang K et al (2001) Anti-Kondo resonance in transport through a quantum wire with a side coupled quantum dot. Phys Rev B 63:113304

    ADS  Google Scholar 

  25. Kastner MA (1993) Artificial atoms. Phys Today 46:24–31

    ADS  Google Scholar 

  26. Kikoin K, Avishai Y (2001) Kondo tunneling through real and artificial molecules. Phys Rev Lett 86:2090–2093

    ADS  Google Scholar 

  27. Kikoin K, Avishai Y (2002) Kondo singlet versus Zhang-Rice and Heitler‐London singlets. Physica B 312–313:165–166

    Google Scholar 

  28. Kikoin K, Avishai Y, Kiselev MN (2006) Dynamical symmetries in nanophysics. In: Nanophysics, Nanoclusters and Nanodevices. Nova Publishers, New York, pp 39–86

    Google Scholar 

  29. Kim TS, Hershfield S (2001) Suppression of current in transport through parallel double quantum dots. Phys Rev B 63:245326

    ADS  Google Scholar 

  30. Kiselev MN, Kikoin K, Molenkamp LW (2003) Resonance Kondo tunneling through a double quantum dot at finite bias. Phys Rev B 68:155323

    ADS  Google Scholar 

  31. Kondo J (1964) Resistance minimum in dilute magnetic alloys. Progr Theor Phys 32:37–49

    ADS  Google Scholar 

  32. Kowenhoven LP, Austing DG, Tarucha S (2001) Few‐electron quantum dots. Rep Progr Phys 64:701–736

    ADS  Google Scholar 

  33. Kuzmenko T, Kikoin K, Avishai Y (2004) Kondo effect in systems with dynamical symmetries. Phys Rev B 69:195109

    ADS  Google Scholar 

  34. Kuzmenko T, Kikoin K, Avishai Y (2006) Magnetically tunable Kondo–Aharonov–Bohm effect in triangular quantum dot. Phys Rev Lett 96:046601

    ADS  Google Scholar 

  35. Kuzmenko T, Kikoin K, Avishai Y (2006) Tunneling through triple quantum dots with mirror symmetry. Phys Rev B 73:235310

    ADS  Google Scholar 

  36. Leonhard D et al (1993) Direct formation of quantum‐size dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl Phys Lett 63:3203–3205

    ADS  Google Scholar 

  37. Loss D, DiVincenco DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126

    ADS  Google Scholar 

  38. Makarovski A et al (2007) \( { SU(4) } \) and \( { SU(2) } \) Kondo effects in carbon nanotube quantum dots. Phys Rev B 75:241407

    ADS  Google Scholar 

  39. Matveev KA, Larkin AI (1992) Interaction‐induced threshold singularities in tunneling via localized levels. Phys Rev B 46:15337–15347

    ADS  Google Scholar 

  40. Mitra A, Aleiner I, Millis AJ (2004) Phonon effects in molecular transistors: quantum and classical treatment. Phys Rev B 69:245302

    ADS  Google Scholar 

  41. Molenkamp LW et al (1995) Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys Rev Lett 75:4282–4285

    ADS  Google Scholar 

  42. Ng TK, Lee PA (1988) On-site Coulomb repulsion and resonant tunneling. Phys Rev Lett 61:1768–1771

    ADS  Google Scholar 

  43. Nugard J et al (2000) Kondo physics in carbon nanotubes. Nature 408:342–345

    ADS  Google Scholar 

  44. Paaske J et al (2006) Nonequilibrium singlet‐triplet Kondo effect in carbon nanotubres. Nat Phys 2:460–464

    Google Scholar 

  45. Park H et al (2000) Nanomechanical oscillations in a single- C60 transistor. Nature 407:57–60

    ADS  Google Scholar 

  46. Pasupathy AN et al (2005) Vibration assisted electron tunneling in C140 single electron transistors. Nano Lett 5:203–207

    ADS  Google Scholar 

  47. Plihal M, Gadzuk JW (2001) Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances. Phys Rev B 63:085404

    ADS  Google Scholar 

  48. Pustilnik M, Avishai Y, Kikoin (2000) Quantum dots with even number of electrons: Kondo effect in a finite magnetic field. Phys Rev Lett 84:1756–1759

    ADS  Google Scholar 

  49. Pustilnik M, Glazman LI (2001) Kondo effect induced by magnetic field. Phys Rev B 64:45328

    ADS  Google Scholar 

  50. Rashba EI (2006) Modern trends in semiconductor Spintronics. In: Ivanov AL, Tikhodeev SG (eds) Problems of Condensed Matter Physics. Clarendon Press, Oxford, pp 188–198

    Google Scholar 

  51. Read MA (1993) Quantum dots. Sci Amer 268:118–123

    ADS  Google Scholar 

  52. Saraga DS, Loss D (2003) Spin‐entangled currents created by a triple quantum dot. Phys Rev Lett 90:166803

    ADS  Google Scholar 

  53. Scarola VW, Das Sarma S (2005) Exchange gate in solid-state spin quantum computation: the applicability of the Heisenberg model. Phys Rev A 71:032340

    ADS  Google Scholar 

  54. Tans S et al (1998) Electron‐electron correlations in carbon nanotubes. Nature 394:761–764

    ADS  Google Scholar 

  55. Teichert C (2002) Self‐organization of nanostructures in semiconductor heteroepitaxy. Phys Repts 365:335–432

    ADS  Google Scholar 

  56. Vidan A et al (2004) Triple quantum dot charging rectifier. Appl Phys Lett 85:3602–3604

    ADS  Google Scholar 

  57. Waldmann O, Zhao L, Thompson LK (2002) Field‐dependent anisotropy change in a supramolecular Mn(II)-[\( { 3\times 3 } \)] grid. Phys Rev Lett 88:066401

    ADS  Google Scholar 

  58. Wegewijs M et al (2007) Magnetotransport through single‐molecule magnets: Kondo peaks, zero-bias dips, molecular symmetry and Berry's phase. New J Phys 9:344

    Google Scholar 

  59. Yu LH, Natelson D (2004) The Kondo effect in C60 single- molecule transistors. Nano Lett 4:79–83

    ADS  Google Scholar 

Books and Reviews

  1. Cuniberti G, Fagas G, Richter K (eds) (2005) Molecular electronics. Lecture Notes in Physics, vol 680. Springer, New York

    Google Scholar 

  2. Englefield MJ (1972) Group Theory and the Coulomb Problem. Wiley, New York

    MATH  Google Scholar 

  3. Kouwenhoven LP, Glazman LI (2001) Revival of the Kondo effect. Phys World 14:33–38

    Google Scholar 

  4. Natelson D (2006) Handbook of Organic Electronics and Photonics. American Scientific Publishers, Valencia

    Google Scholar 

  5. Sachrajda PH, Ciorga M (2003) Nano‐spintronics with lateral quantum dots. Kluwer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Avishai, Y., Kikoin, K. (2009). Tunneling Through Quantum Dots with Discrete Symmetries. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_571

Download citation

Publish with us

Policies and ethics