Skip to main content

Water Waves and the Korteweg–de Vries Equation

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

wave is usually defined as the propagation of a disturbance in a medium.

The simplest example is the exponential or sinusoidal wave which has the form

$$ \begin{aligned}[b] u(x,t) &= a \operatorname{Re} \exp\left[i(kx-\omega t)\right] \\ &=a\cos(kx-\omega t)\:, \end{aligned} $$
(1)

where a is called the amplitude, Re stands for the real part, \( \smash{ k \: (= \frac{2\pi}{\lambda}) } \) is called the wavenumber and λ is called the wavelength of the wave, and ω is called the frequency and it is a definite function of the wavenumber k and hence, \( { \omega=\omega(k) } \) is determined by the particular equation of the problem. The quantity \( { \theta=kx-\omega t } \) is called the phase of the wave so that a wave of a constant phase propagate with \( { kx-\omega t=\text{constant} } \).

The mathematical relation

$$ \begin{aligned}[b] \omega &= \omega(k)\quad\text{or} \\ D(\omega,k)&=0\:, \end{aligned} $$
(2)

is called the dispersion relation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Axisymmetric (concentric) KdV equation:

This is a partial differential equation for the free surface \( { \eta(R,t) } \) in the form \( \smash{ (2\eta_{R}+\frac{1}{R}\,\eta+3\eta\eta_{\xi})+\frac{1}{3}\,\eta_{\xi\xi\xi}=0 } \).

Benjamin–Feir instability of water waves:

This describes the instability of nonlinear water waves.

Bernoulli's equation:

This is a partial differential equation which determines the pressure in terms of the velocity potential in the form \( \phi_{t} + \smash{\frac{1}{2}(\nabla\phi)^{2} + \frac{P}{\rho}} + gz = 0 \), where ϕ is the velocity potential, P is the pressure, ρ is the density and g is the acceleration due to gravity.

Boussinesq equation:

This is a nonlinear partial differential equation in shallow water of depth h given by

$$ u_{tt}-c^{2}u_{xx}+\frac{1}{2}\big(u^{2}\big)_{xx}=\frac{1}{3}\, h^{2}u_{xxtt}\:, \\ \text{where } \; c^{2}=\sqrt{gh}\:.$$
Cnoidal waves:

Waves are represented by the Jacobian elliptic function \( { cn(z,m) } \).

Continuity equation:

This is an equation describing the conservation of mass of a fluid. More precisely, this equation for an incompressible fluid is \( { \mathit{div} \: \mathbf{u}=\frac{\partial u}{\partial x}} \allowbreak {+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 } \), where \( { \mathbf{u}=(u,v,w) } \) is the velocity field, and \( { \mathbf{x}=(x,y,z) } \).

Continuum hypothesis:

It requires that the velocity \( { \mathbf{u}=} \allowbreak {(u,v,w) } \), pressure p and density ρ are continuous functions of position \( { \mathbf{x}=(x,y,z) } \) and time t.

Crapper's nonlinear capillary waves:

Pure progressive capillary waves of arbitrary amplitude.

Dispersion relation:

A mathematical relation between the wavenumber, frequency and/or the amplitude of a wave.

Euler equations:

This is a nonlinear partial differential equation for an inviscid incompressible fluid flow governed by the velocity field \( { \mathbf{u}=(u,v,w) } \) and pressure \( { P(\mathbf{x},t) } \) under the external force \( { \mathbf{F} } \). More precisely, \( { \frac{\partial\mathbf{u}}{\partial t}+(\mathbf{u}\cdot\nabla)\mathbf{u}=-\frac{1}{\rho}\,\nabla P+\mathbf{F} } \), where ρ is the constant density of the fluid.

Group velocity:

The velocity defined by the derivative of the frequency with respect to the wavenumber \( { (c_{g}=\mskip2mu\mathrm{d}\omega/\text{d} k) } \).

Johnson's equation:

This is a nearly concentric KdV equation for \( { \eta(R,\xi,\theta) } \) in cylindrical polar coordinates in the form

$$ \left(2\eta_{R}+\frac{1}{R}\,\eta+3\eta\eta_{\xi}+\frac{1}{3}\,\eta_{\xi\xi\xi}+\frac{1}{R^{2}}\,\eta_{\theta\theta}\right)=0\:.$$
Kadomtsev–Petviashvili (KP) equation:

This is a two‐dimensional KdV equation in the form

$$ \left(2\eta_{t}+3\eta\eta_{\xi}+\frac{1}{3}\,\eta_{\xi\xi\xi}\right)_{\xi}+\eta_{yy}=0\:.$$
KdV–Burgers equation:

This is a nonlinear partial differential equation in the form

$$ \eta_{t}+c_{0}\,\eta_{x}+d\,\eta\,\eta_{x}+\mu\,\eta_{xxx}-\nu\,\eta_{xx}=0\:,\quad\\ \text{where }\mu=\frac{1}{6}\, c_{0}h_{0}^{2}\:. $$
Korteweg–de Vries (KdV) equation:

This is a nonlinear partial differential equation for a solitary wave (or soliton). This equation in a shallow water of depth h is governed by the free surface elevation \( { \eta(x,t) } \) in the form \( { \frac{\partial\eta}{\partial t}+c(1+\frac{3}{2h}\,\eta)\eta_{x}+\left(\frac{ch^{2}}{6}\right)\eta_{xxx}=0 } \), where \( \smash{ c} \allowbreak \smash{=\sqrt{gh} } \) is the shallow water speed.

Laplace equation:

This is partial differential equation of the form \( { \nabla^{2}\phi=\phi_{xx}+\phi_{yy}+\phi_{zz} } \) where the \( { \phi=} \allowbreak {\phi(x,y,z)} \) is the potential.

Linear dispersion relation:

A mathematical relation between the wavenumber k and the frequency ω of waves \( { (\omega=\omega(k)) } \).

Linear dispersive waves:

Waves with the given dispersion relation between the wavenumber and the frequency.

Linear Schrödinger equation:

This can be written in the form \( { i\, a_{t}+\frac{1}{2}\,\omega^{\prime\prime}(k)\frac{\partial^{2}a}{\partial x^{2}}=0 } \), where \( { a=a(x,t) } \) is the amplitude and \( { \omega=\omega(k) } \).

Linear wave equation in Cartesian coordinates:

In three dimensions this can be written in the form \( { u_{tt}=c^{2}\,\nabla^{2}u } \), where c is a constant and \( {\nabla^{2}=} \allowbreak {\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial}{\partial z^{2}} } \) is the three‐dimensional Laplacian.

Linear wave equation in cylindrical polar coordinates:

This can be written in the form \( { u_{tt}=u_{rr}+\frac{1}{r}\, u_{r}} \allowbreak {+\frac{1}{r^{2}}\, u_{\theta\theta}} \).

Navier–Stokes equations:

This is a nonlinear partial differential equation for an incompressible and viscous fluid flow governed by the velocity field \( { \mathbf{u}=(u,v,w) } \) and pressure \( { P(\mathbf{x},t) } \) under the action of external force \( { \mathbf{F} } \). More precisely, \( { \frac{\partial\mathbf{u}}{\partial t}+(\mathbf{u}\cdot\nabla)\mathbf{u}=-\frac{1}{\rho}\,\nabla P} \allowbreak {+\nu^{2}\mathbf{u}+\mathbf{F}} \), where ρ is the density and \( { \nu=(\mu/\rho) } \) is the kinematic viscosity.

Nonlinear dispersion relation:

A mathematical relation between the wavenumber k, frequency ω and the amplitude a that is \( { D(\omega,k,a)=0 } \).

Nonlinear dispersive waves:

Waves with the given dispersion relation between the wavenumber, frequency and the amplitude.

Non‐linear Schrödinger (NLS) equation:

This is a nonlinear partial differential equation for the nonlinear modulation of a monochromatic wave. The amplitude, \( { a(x,t) } \) of the modulation satisfies the equation \( \smash{ i\big(\frac{\partial a}{\partial t}+\omega^{\prime}_{0}\,\frac{\partial a}{\partial x}\big)+\frac{1}{2}\,\omega^{\prime\prime}_{0}\,\frac{\partial^{2}a}{\partial x^{2}}+\gamma|a|^{2}a=0 } \), where \( { \omega_{0}} \allowbreak {=\omega_{0}(k) } \), and γ is a constant.

Ocean waves:

Waves observed on the surface or inside the ocean.

Phase velocity:

The velocity defined by the ratio of the frequency ω and the wavenumber k, \( \smash{ (c_{p}=\frac{\omega}{k}) } \).

Resonant or critical phenomenon:

Waves with unbounded amplitude.

Sinusoidal (or exponential) wave:

A wave is of the form \( u(x,t)=a\, \operatorname{Re}\exp[i(kx-\omega t)]=a\cos(kx-\omega t) \), where a is amplitude, k is the wavenumber \( \smash{ (k=\frac{2\pi}{\lambda}) } \), λ is the wavelength and ω is the frequency.

Solitary waves (or soliton):

Waves describing a single hump of given height travel in a medium without change of shape.

Stokes expansion:

This is an expansion of the frequency in terms of the wavenumber k and the amplitude a, that is, \( \smash{ \omega(k)=\omega_{0}(k)+\omega_{2}(k)a^{2}+\ldots\, } \).

Stokes wave:

Water waves with dispersion relation involving the wavenumber, frequency and amplitude.

Surface‐capillary gravity waves:

Waves under the joint action of the gravitational field and surface tension.

Surface gravity waves:

Water waves under the action of the gravitational field.

Variational principle:

For three‐dimensional water waves, it is of the form \( \smash{ \delta I=\delta\iint_{D}L\, \mskip2mu\mathrm{d}\mathbf{x}\, \text{d} t=0} \), where L is called the Lagrangian.

Velocity potential:

A single valued function \( { \phi=\phi(\mathbf{x},t) } \) defined by \( { \mathbf{u}=\nabla\phi } \).

Water waves:

Waves observed on the surface or inside of a body of water.

Waves on a running stream:

Waves observed on the surface or inside of a body of fluid which is moving with a given velocity.

Whitham averaged variational principle:

This can be formulated in the form \( \smash{ \delta\iint\mathcal{L}\, \mskip2mu\mathrm{d}\mathbf{x}\, \text{d} t=0 } \), where \( \smash{ \mathcal{L} } \) is called the Whitham average Lagrangian over the phase of the integral of the Lagrangian L defined by \( \smash{ \mathcal{L}(\omega,\mathbf{k},a,\mathbf{x},t)=\frac{1}{2\pi}\int_{0}^{2\pi}L\, \mskip2mu\mathrm{d}\theta } \), where L is the Lagrangian.

Whitham's conservation equations:

These are first order nonlinear partial differential equations in the form \( \frac{\partial k}{\partial t}+\frac{\partial\omega}{\partial x}=0 \), \( \frac{\partial}{\partial t}\left\{ f(k)A^{2}\right\} +\frac{\partial}{\partial x}\left\{ f(k)C(k)A^{2}\right\} =0 \), where \( { k=k(x,t) } \) is the density of waves, \( { \omega=\omega(x,t) } \) is the flux of waves, \( { A=A(x,t) } \) is the amplitude and \( \smash{ f(k) } \) is an arbitrary function.

Whitham's equation:

This first order nonlinear partial differential equation represents the conservation of waves. Mathematically, \( { (\partial k/\partial t)+(\partial\omega/\partial x)=0 } \) where \( { k=k(x,t) } \) is the density of waves and \( { \omega=\omega(x,t) } \) is the flux of waves.

Whitham's equation for slowly varying wavetrain:

This is written in the form \( { \frac{\partial}{\partial t}\,\mathcal{L}_{\omega}-\frac{\partial}{\partial x_{i}}\,\mathcal{L}_{k_{i}}=0 } \), where \( { \mathcal{L} } \) is the Whitham averaged Lagrangian.

Whitham's nonlinear nonlocal equations:

It is in the form \( \smash{u_{t}+ duu_{x}+\!\int_{-\infty}^{\infty} K(x\!-\!s) \, u_{s}(s,t) \, \mathrm{d} s=0} \), where \( { K(x)=\mathcal{F}^{-1}\left\{ c(k)=\omega/k\right\} } \) and \( { \mathcal{F}^{-1} } \) is the inverse Fourier transformation.

Bibliography

Primary Literature

  1. Airy GB (1845) Tides and Waves. In: Encyclopedia Metropolitana, Article 192

    Google Scholar 

  2. Akylas TR (1984) On the excitation of long nonlinear water waves by a moving pressure distribution. J Fluid Mech 141:455–466

    MathSciNet  ADS  MATH  Google Scholar 

  3. Akylas TR (1984) On the excitation of nonlinear water waves by a moving pressure distribution oscillatory at resonant frequency. Phys Fluids 27:2803–2807

    MathSciNet  ADS  MATH  Google Scholar 

  4. Amick CJ, Fraenkel LE, Toland JF (1982) On the Stokes Conjecture for the wave of extreme form. Acta Math Stockh 148:193–214

    MathSciNet  MATH  Google Scholar 

  5. Benjamin TB (1967) Instability of periodic wave trains in nonlinear dispersive systems. Proc Roy Soc London A 299:59–75

    ADS  Google Scholar 

  6. Benjamin TB, Feir JE (1967) The disintegration of wavetrains on deep water. Part 1. Theory. J Fluid Mech 27:417–430

    ADS  MATH  Google Scholar 

  7. Benney DJ, Roskes G (1969) Wave instabilities. Stud Appl Math 48:377–385

    MATH  Google Scholar 

  8. Berezin YA, Karpman VI (1966) Nonlinear evolution of disturbances in plasmas and other dispersive media. Soviet Phys JETP 24:1049–1056

    ADS  Google Scholar 

  9. Boussinesq MJ (1871) Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Comptes Rendus 72:755–759

    MATH  Google Scholar 

  10. Boussinesq MJ (1871) Théorie generale des mouvenments qui sont propagés dans un canal rectangulaire horizontal. Comptes Rendus 72:755–759

    MATH  Google Scholar 

  11. Boussinesq MJ (1872) Théorie des ondes et des rumous qui se propagent le long d'un canal rectagulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J Math Pures Appl ser 2/17:55–108

    Google Scholar 

  12. Boussinesq MJ (1877) Essai sur la théorie des eaux courants. Mémoires Acad Sci Inst Fr ser 2 23:1–630

    Google Scholar 

  13. Cercignani C (1977) Solitons. Theory and application. Rev Nuovo Cimento 7:429–469

    MathSciNet  ADS  Google Scholar 

  14. Chu VH, Mei CC (1970) On slowly‐varying Stokes waves. J Fluid Mech 41:873–887

    MathSciNet  ADS  MATH  Google Scholar 

  15. Chu VH, Mei CC (1971) The nonlinear evolution of Stokes waves in deep water. J Fluid Mech 47:337–351

    ADS  MATH  Google Scholar 

  16. Crapper GD (1957) An exact solution for progressive capillary waves of arbitrary amplitude. J Fluid Mech 2:532–540

    MathSciNet  ADS  MATH  Google Scholar 

  17. Davey A, Stewartson K (1974) On three‐dimensional packets of surface waves. Proc Roy Soc London A 338:101–110

    MathSciNet  ADS  MATH  Google Scholar 

  18. Debnath L, Rosenblat S (1969) The ultimate approach to the steady state in the generation of waves on a running stream. Quart J Mech Appl Math XXII:221–233

    Google Scholar 

  19. Debnath L (1994) Nonlinear Water Waves. Academic Press, Boston

    MATH  Google Scholar 

  20. Debnath L (2005) Nonlinear Partial Differential Equations for Scientists and Engineers (Second Edition). Birkhauser, Boston

    Google Scholar 

  21. Debnath L, Bhatta D (2007) Integral Transforms and Their Applications. Second Edition. Chapman Hall/CRC Press, Boca Raton

    Google Scholar 

  22. Dutta M, Debnath L (1965) Elements of the Theory of Elliptic and Associated Functions with Applications. World Press Pub. Ltd., Calcutta

    Google Scholar 

  23. Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems I. Los Alamos Report LA 1940. In: Newell AC (ed) Lectures in Applied Mathematics. American Mathematical Society, Providence 15:143–156

    Google Scholar 

  24. Gardner CS, Greene JM, Kruskal MD, Miura RM (1967) Method for solving the KdV equation. Phys Rev Lett 19:1095–1097

    ADS  MATH  Google Scholar 

  25. Gardner CS, Greene JM, Kruskal MD, Miura RM (1974) Korteweg–de Vries equation and generalizations, VI, Methods for exact solution. Comm Pure Appl Math 27:97–133

    MathSciNet  MATH  Google Scholar 

  26. Hammack JL, Segur H (1974) The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments. J Fluid Mech 65:289–314

    MathSciNet  ADS  MATH  Google Scholar 

  27. Hasimoto H, Ono H (1972) Nonlinear modulation of gravity waves. J Phys Soc Jpn 35:805–811

    ADS  Google Scholar 

  28. Helal MA, Molines JM (1981) Nonlinear internal waves in shallow water. A Theoretical and Experimental study. Tellus 33:488–504

    MathSciNet  ADS  Google Scholar 

  29. Hirota R (1971) Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys Rev Lett 27:1192–1194

    ADS  MATH  Google Scholar 

  30. Hirota R (1973) Exact envelope‐soliton solutions of a nonlinear wave equation. J Math Phys 14:805–809

    MathSciNet  ADS  MATH  Google Scholar 

  31. Hirota R (1973) Exact N‑Solutions of the wave equation of long waves in shallow water and in nonlinear lattices. J Math Phys 14:810–814

    MathSciNet  ADS  MATH  Google Scholar 

  32. Huang DB, Sibul OJ, Webster WC, Wehausen JV, Wu DM, Wu TY (1982) Ship moving in a transcritical range. Proc. Conf. on Behavior of Ships in Restricted Waters (Varna, Bulgaria) 2:26-1–26-10

    Google Scholar 

  33. Infeld E (1980) On three‐dimensional generalizations of the Boussinesq and Korteweg–de Vries equations. Quart Appl Math XXXVIII:277–287

    MathSciNet  Google Scholar 

  34. Johnson RS (1980) Water waves and Korteweg–de Vries equations. J Fluid Mech 97:701–719

    MathSciNet  ADS  MATH  Google Scholar 

  35. Johnson RS (1997) A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Kadomtsev BB, Petviashvili VI (1970) On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl 15:539–541

    ADS  MATH  Google Scholar 

  37. Kaplan P (1957) The waves generated by the forward motion of oscillatory pressure distribution. In: Proc. 5th Midwest Conf. Fluid Mech, pp 316–328

    Google Scholar 

  38. Karpman VI (1975) Nonlinear Waves in Dispersive Media. Pergamon Press, London

    Google Scholar 

  39. Korteweg DJ and de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil Mag (5) 39:422–443

    MATH  Google Scholar 

  40. Kraskovskii YP (1960) On the theory of steady waves of not all small amplitude (in Russian). Dokl Akad Nauk SSSR 130:1237–1252

    Google Scholar 

  41. Kraskovskii YP (1961) On the theory of permanent waves of finite amplitude (in Russian). Zh Vychisl Mat Fiz 1:836–855

    Google Scholar 

  42. Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl Math 21:467–490

    MathSciNet  MATH  Google Scholar 

  43. Levi–Civita T (1925) Détermination rigoureuse des ondes permanentes d'ampleur finie. Math Ann 93:264–314

    Google Scholar 

  44. Lighthill MJ (1965) Group velocity. J Inst Math Appl 1:1–28

    MathSciNet  Google Scholar 

  45. Lighthill MJ (1967) Some special cases treated by the Whitham theory. Proc Roy Soc London A 299:38–53

    ADS  Google Scholar 

  46. Lighthill MJ (1978) Waves in Fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  47. Luke JC (1967) A variational principle for a fluid with a free surface. J Fluid Mech 27:395–397

    MathSciNet  ADS  MATH  Google Scholar 

  48. Michell JH (1893) On the highest waves in water. Phil Mag 36:430–435

    MATH  Google Scholar 

  49. Miche R (1944) Movements ondulatories de la mer en profondeur constants ou décreoissante. Forme limite de la houle lors de son déferlement. Application aux dignes maritimes. Ann Ponts Chaussées 114:25–78, 131–164, 270–292, 369–406

    Google Scholar 

  50. Palais RS (1997) The symmetries of solitons. Bull Amer Math Soc 34:339–403

    MathSciNet  MATH  Google Scholar 

  51. Rayleigh L (1876) On waves. Phil Mag 1:257–279

    MATH  Google Scholar 

  52. Riabouchinsky D (1932) Sur l'analogie hydraulique des mouvements d'un fluide compressible, Institut de France, Académie des Sciences. Comptes Rendus 195:998

    Google Scholar 

  53. Stoker JJ (1957) Water Waves. Interscience, New York

    MATH  Google Scholar 

  54. Stokes G (1847) On the theory of oscillatory waves. Trans Camb Phil Soc 8:197–229

    Google Scholar 

  55. Struik DJ (1926) Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal à profondeur finie. Math Ann 95:595–634

    MathSciNet  MATH  Google Scholar 

  56. Toland JF (1978) On the existence of a wave of greatest height and Stokes' conjecture. Proc. Roy. Soc. Lond. A 363:469–485

    MathSciNet  ADS  MATH  Google Scholar 

  57. Weidman PD, Maxworthy T (1978) Experiments on strong interactions between solitary waves. J Fluid Mech 85:417–431

    ADS  Google Scholar 

  58. Whitham GB (1965) A general approach to linear and nonlinear dispersive waves using a Lagrangian. J Fluid Mech 22:273–283

    MathSciNet  ADS  Google Scholar 

  59. Whitham GB (1965) Nonlinear dispersive waves, Proc Roy Soc London A 283:238–261

    MathSciNet  ADS  MATH  Google Scholar 

  60. Whitham GB (1967) Nonlinear dispersion of water waves. J Fluid. Mech 27:399–412

    MathSciNet  MATH  Google Scholar 

  61. Whitham GB (1967) Variational methods and application to water waves. Proc Roy Soc London A 299:6–25

    ADS  MATH  Google Scholar 

  62. Whitham GB (1974) Linear and Nonlinear Waves. John Wiley, New York

    MATH  Google Scholar 

  63. Whitham GB (1984) Comments on periodic waves and solitons. IMA J Appl Math 32:353–366

    MathSciNet  MATH  Google Scholar 

  64. Wu DM, Wu TY (1982) Three‐dimensional nonlinear long waves due to a moving pressure. In: Proc 14th Symp. Naval Hydrodyn. National Academy of Sciences, Washington DC, pp 103–129

    Google Scholar 

  65. Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    ADS  MATH  Google Scholar 

  66. Zabusky NJ (1967) A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. In: Ames WF (ed) Proc. Symp. on Nonlinear Partial Differential Equations. Academic Press, Boston. pp 223–258

    Google Scholar 

  67. Zabusky NJ, Galvin CJ (1971) Shallow water waves, the Korteweg–de Vries equation and solitons. J Fluid Mech 48:811–824

    ADS  Google Scholar 

Books and Reviews

  1. Ablowitz MJ, Clarkson PA (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Bhatnagar PL (1979) Nonlinear Waves in One‐Dimensional Dispersive Systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Crapper GD (1984) Introduction to Water Waves. Ellis Horwood Limited, Chichester

    MATH  Google Scholar 

  4. Debnath L (1983) Nonlinear Waves. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Dodd RK, Eilbeck JC, Gibbons JD, Morris HC (1982) Solitons and Nonlinear Wave Equations. Academic Press, London

    MATH  Google Scholar 

  6. Drazin PG, Johnson RS (1989) Solitons: An Introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Infeld E, Rowlands G (1990) Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Lamb H (1932) Hydrodynamics, 6th edition. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Leibovich S, Seebass AR (1972) Nonlinear Waves. Cornell University Press, Ithaca

    Google Scholar 

  10. Myint-U T, Debnath L (2007) Linear Partial Different Equations for Scientists and Engineers (fourth edition). Birkhauser, Boston

    Google Scholar 

  11. Russell JS (1844) Report on waves. In: Murray J (ed) Report on the 14th Meeting of the British Association for the Advancement of Science. London 311–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Debnath, L. (2009). Water Waves and the Korteweg–de Vries Equation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_586

Download citation

Publish with us

Policies and ethics