Skip to main content

Cellular Automaton Modeling of Tumor Invasion

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Cancer cells acquire characteristic traits in a step-wise manner during carcinogenesis . Some of these traits are autonomous growth,induction of angiogenesis, invasion and metastasis. In this chapter, the focus is on one of the late stages of tumor progression: tumor invasion. Tumorinvasion has been recognized as a complex system, since its behavior emerges from the combined effect of tumor cell-cell andcell‐microenvironment interactions. Cellular automata (CA) provide simple models of self‐organizing complex systems in which collectivebehavior can emerge out of an ensemble of many interacting “simple” components. Recently, cellular automata have been used to gaina deeper insight in tumor invasion dynamics. In thischapter, we briefly introduce cellular automata as models oftumor invasion...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cadherins:

Important class of transmembrane proteins. They play a significant role in cell-cell adhesion, ensuring that cells within tissues are bound together.

Chemotaxis:

Motion response to chemical concentration gradients of a diffusive chemical substance.

Extracellular matrix (ECM):

Components that are extracellular and composed of secreted fibrous proteins (e. g. collagen) and gel-like polysaccharides (e. g. glycosaminoglycans) binding cells and tissues together.

Fiber tracts:

Bundle of nerve fibers having a common origin, termination, and function and especially one within the spinal cord or brain.

Haptotaxis:

Directed motion of cells along adhesion gradients of fixed substrates in the ECM, such as integrins.

“Slime trail motion”:

Cells secrete a non‐diffusive substance; concentration gradients of the substance allow the cells to migrate towards already explored paths.

Somatic evolution:

Darwinian‐type evolution that occurs on soma (as opposed to germ) cells and characterizes cancer progression [1].

Bibliography

  1. Bodmer W (1997) Somatic evolution of cancer cells. J R Coll Physicians Lond31(1):82–89

    Google Scholar 

  2. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 4260194:23–28

    ADS  Google Scholar 

  3. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell100:57–70

    Google Scholar 

  4. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cellmigration. Curr Opin Cell Biol 16(1):14–23

    Google Scholar 

  5. Sanga S, Frieboes H, Zheng X, Gatenby R, Bearer E, Cristini V (2007) Predictiveoncology: multidisciplinary, multi-scale in‐silico modeling linking phenotype, morphology and growth. Neuroim37(1):120–134

    Google Scholar 

  6. Hatzikirou H, Deutsch A, Schaller C, Simon M, Swanson K (2005) Mathematicalmodelling of glioblastoma tumour development: a review. Math Mod Meth Appl Sc 15(11):1779–1794

    MathSciNet  Google Scholar 

  7. Preziozi L (ed) (2003) Cancer modelling and simulation. Chapman &Hall CRC Press

    Google Scholar 

  8. Marchant BP, Norbury J, Perumpanani AJ (2000) Traveling shock waves arising ina model of malignant invasion. SIAM J Appl Math 60(2):263–276

    MathSciNet  Google Scholar 

  9. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences froma mathematical model of malignant invasion. Invas Metast 16:209–221

    Google Scholar 

  10. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1999) A two parameterfamily of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Phys D126:145–159

    Google Scholar 

  11. Sherratt JA, Nowak MA (1992) Oncogenes, anti‐oncogenes and the immuneresponse to cancer: a mathematical model. Proc Roy Soc Lond B 248:261–271

    ADS  Google Scholar 

  12. Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avasculartumour growth. J Math Biol 43:291–312

    MathSciNet  Google Scholar 

  13. Swanson KR, Alvord EC, Murray J (2002) Quantifying efficacy of chemotherapy ofbrain tumors (gliomas) with homogeneous and heterogeneous drug delivery. Acta Biotheor 50:223–237

    Google Scholar 

  14. Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson K, Pelegrini‐IssacM, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Res Med54:616–624

    Google Scholar 

  15. Anderson A, Weaver A, Cummings P, Quaranta V (2006) Tumor morphology andphenotypics evolution driven by selective pressure from the microenvironment. Cell 127:905–915

    Google Scholar 

  16. Frieboes H, Lowengrub J, Wise S, Zheng X, Macklin P, Bearer E, Cristini V(2007) Computer simulation of glioma growth and morphology. Neuroim 37(1):59–70

    Google Scholar 

  17. Deutsch A, Dormann S (2005) Cellular Automaton Modeling of Biological PatternFormation. Birkhauser, Boston

    Google Scholar 

  18. Bru A, Albertos S, Subiza JL, Lopez Garcia‐Asenjo J, Bru I (2003) Theuniversal dynamics of tumor growth. Bioph J 85:2948–2961

    Google Scholar 

  19. Lesne A (2007) Discrete vs continuous controversy in physics. Math Struct CompSc 17:185–223

    MathSciNet  Google Scholar 

  20. Chopard B, Dupuis A, Masselot A, Luthi P (2002) Cellular automata and latticeBoltzmann techniques: an approach to model and simulate complex systems. Adv Compl Syst 5(2):103–246

    MathSciNet  Google Scholar 

  21. Moreira J, Deutsch A (2002) Cellular automaton models of tumour development:a critical review. Adv Compl Syst 5:1–21

    MathSciNet  Google Scholar 

  22. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics andbeyond. Series Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford

    Google Scholar 

  23. Sander LM, Deisboeck TS (2002) Growth patterns of microscopic braintumours. Phys Rev E 66:051901

    ADS  Google Scholar 

  24. Wolgemuth CW, Hoiczyk E, Kaiser D, Oster GF (2002) How myxobacteriaglide. Curr Biol 12(5):369–377

    Google Scholar 

  25. Anderson ARA (2005) A hybrid model of solid tumour invasion: theimportance of cell adhesion. Math Med Biol 22:163–186

    ADS  Google Scholar 

  26. Habib S, Molina‐Paris C, Deisboeck TS (2003) Complex dynamics of tumors:modeling an emerging brain tumor system with coupled reaction‐diffusion equations. Phys A 327:501–524

    Google Scholar 

  27. Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion:A discrete simulation using the extended Potts model. J Theor Biol 216:85–100

    MathSciNet  Google Scholar 

  28. Graner F, Glazier J (1992) Simulation of biological cell sorting usinga two‐dimensional extended Potts Model. Phys Rev Lett 69:2013–2016

    ADS  Google Scholar 

  29. Aubert M, Badoual M, Freol S, Christov C, Grammaticos B (2006) A cellularautomaton model for the migration of glioma cells. Phys Biol 3:93–100

    ADS  Google Scholar 

  30. Wurzel M, Schaller C, Simon M, Deutsch A (2005) Cancer cell invasion of normalbrain tissue: Guided by Prepattern? J Theor Med 6(1):21–31

    Google Scholar 

  31. Hatzikirou H, Deutsch A (2008) Cellular automata as microscopic models of cellmigration in heterogeneous environments. Curr Top Dev Biol 81:401–434

    Google Scholar 

  32. Patel A, Gawlinski E, Lemieux S, Gatenby R (2001) Cellular automaton model ofearly tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol213:315–331

    MathSciNet  Google Scholar 

  33. Gillies RJ, Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolutionof carcinogenesis. Canc Metast Rev 26:311–317

    Google Scholar 

  34. Smallbone K, Gatenby R, Gillies R, Maini P, Gavaghan D (2007) Metabolicchanges during carcinogenesis: Potential impact on invasiveness. J Theor Biol 244:703–713

    MathSciNet  Google Scholar 

  35. Basanta D, Hatzikirou H, Deutsch A (2008) The emergence of invasiveness intumours: a game theoretic approach. Eur Phys J B 63:393–397

    MathSciNet  ADS  Google Scholar 

  36. Basanta D, Simon M, Hatzikirou H, Deutsch A (2009) An evolutionary game theoryperspective elucidates the role of glycolysis in tumour invasion. Cell Prolif (to appear)

    Google Scholar 

  37. Fedotov S, Iomin A (2007) Migration and proliferation dichotomy in tumor-cellinvasion. Phys Rev Let 98:118101–4

    ADS  Google Scholar 

  38. Hatzikirou H, Basanta B, Simon M, Schaller C, Deutsch A (2009) “Go orGrow”: the key to the emergence of invasion in tumor progression? (under submission)

    Google Scholar 

Download references

Acknowledgments

We are grateful to D. Basanta, L. Brusch, A. Chauviere, E. Flach and F. Peruani for the comments and the fruitful discussions. Weacknowledge support from the systems biology network HepatoSys of the German Ministry for Education and Research through grant 0313082J. AndreasDeutsch is a member of the DFG Research Center for Regenerative Therapies Dresden – Cluster of Excellence – andgratefully acknowledges support by the Center. The research was supported in part by funds from the EU Marie Curie Network “Modeling,Mathematical Methods and Computer Simulation of Tumor Growth and Therapy” (EU-RTD IST-2001-38923). Finally, the authors would like tothank for the financial support of the Gottfried Daimler- and Karl Benz foundation through the project “Biologistics: From bio‐inspiredengineering of complex logistical systems until nanologistics” (25-02/07).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Hatzikirou, H., Breier, G., Deutsch, A. (2009). Cellular Automaton Modeling of Tumor Invasion . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_60

Download citation

Publish with us

Policies and ethics