Skip to main content

Chaotic Behavior of Cellular Automata

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

A discrete time dynamical system (DTDS) is a pair \( { \left\langle X,F \right\rangle } \) where X is a set equipped witha distance d and \( { F\colon X\mapsto X} \) is a mapping which is continuous on X with respect to themetric d. The set X and the function F are called the state space and the next state map. At the very beginning of the seventies, the notion of chaotic behavior forDTDS has been introduced in experimental physics [46]. Successively, mathematicians startedinvestigating this new notion finding more and more complex examples. Although a general universally accepted theory of chaos has not emerged, atleast some properties are recognized as basic components of possible chaotic behavior. Among them one can list: sensitivity to initial conditions,transitivity, mixing, expansively etc. [5,6,21,22,28,29,38,41,42,58,59,60].

In the eighties, S. Wolfram started studying some of these properties in the context of cellular automata (CA) [64]. These...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Equicontinuity:

All points are equicontinuity points (in compact settings).

Equicontinuity point:

A point for which the orbits of nearby points remain close.

Expansivity:

From two distinct points, orbits eventually separate.

Injectivity:

The next state function is injective.

Linear CA:

A CA with additive local rule.

Regularity:

The set of periodic points is dense.

Sensitivity to initial conditions:

For any point x there exist arbitrary close points whose orbits eventually separate from the orbit of x.

Strong transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any point.

Surjectivity:

The next state function is surjective.

Topological mixing:

There always exist points which definitely move from any arbitrary neighborhood to any other.

Transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any other.

Bibliography

Primary Literature

  1. Acerbi L, Dennunzio A, Formenti E (2007) Shifting and lifting of cellular automata. In: Third Conference on Computability in Europe, CiE 2007, Siena, Italy, 18–23 June 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, pp 1–10

    Google Scholar 

  2. Adler R, Konheim A, McAndrew J (1965) Topological entropy. Trans Amer Math Soc 114:309–319

    MathSciNet  Google Scholar 

  3. Akin E, Auslander E, Berg K (1996) When is a transitive map chaotic? In: Bergelson V, March P, Rosenblatt J (eds) Convergence in Ergodic Theory and Probability. de Gruyter, Berlin, pp 25–40

    Google Scholar 

  4. Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comp Syst Sci 6:448–464

    MathSciNet  Google Scholar 

  5. Auslander J, Yorke JA (1980) Interval maps, factors of maps and chaos. Tohoku Math J 32:177–188

    MathSciNet  Google Scholar 

  6. Banks J, Brooks J, Cairns G, Davis G, Stacey P (1992) On Devaney’s definition of chaos. Am Math Mon 99:332–334

    MathSciNet  Google Scholar 

  7. Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Israel J Math 99:149–174

    MathSciNet  Google Scholar 

  8. Blanchard F, Tisseur P (2000) Some properties of cellular automata with equicontinuity points. Ann Inst Henri Poincaré, Probabilité et Statistiques 36:569–582

    MathSciNet  ADS  Google Scholar 

  9. Blanchard F, Kůrka P, Maass A (1997) Topological and measure‐theoretic properties of one‐dimensional cellular automata. Physica D 103:86–99

    Google Scholar 

  10. Blanchard F, Formenti E, Kůrka K (1998) Cellular automata in the Cantor, Besicovitch and Weyl topological spaces. Complex Syst 11:107–123

    Google Scholar 

  11. Blanchard F, Cervelle J, Formenti E (2005) Some results about chaotic behavior of cellular automata. Theor Comp Sci 349:318–336

    MathSciNet  Google Scholar 

  12. Blanchard F, Glasner E, Kolyada S, Maass A (2002) On Li-Yorke pairs. J Reine Angewandte Math 547:51–68

    MathSciNet  Google Scholar 

  13. Boyle M, Kitchens B (1999) Periodic points for cellular automata. Indag Math 10:483–493

    MathSciNet  Google Scholar 

  14. Boyle M, Maass A (2000) Expansive invertible one-sided cellular automata. J Math Soc Jpn 54(4):725–740

    MathSciNet  Google Scholar 

  15. Cattaneo G, Formenti E, Margara L, Mazoyer J (1997) A Shift‐invariant Metric on S Z Inducing a Non‐trivial Topology. In: Mathmatical Foundations of Computer Science 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, pp 179–188

    Google Scholar 

  16. Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comp Sci 244:219–241

    MathSciNet  Google Scholar 

  17. Cattaneo G, Formenti E, Manzini G, Margara L (2000) Ergodicity, transitivity, and regularity for linear cellular automata. Theor Comp Sci 233:147–164. A preliminary version of this paper has been presented to the Symposium of Theoretical Computer Science (STACS’97). LNCS, vol 1200

    MathSciNet  Google Scholar 

  18. Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one‐dimensional cellular automata. Fundam Inform 52:39–80

    MathSciNet  Google Scholar 

  19. Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comp Sci 325:249–271

    MathSciNet  Google Scholar 

  20. D’Amico M, Manzini G, Margara L (2003) On computing the entropy of cellular automata. Theor Comp Sci 290:1629–1646

    Google Scholar 

  21. Denker M, Grillenberger C, Sigmund K (1976) Ergodic Theory on Compact Spaces.Lecture Notes in Mathematics, vol 527. Springer, Berlin

    Google Scholar 

  22. Devaney RL (1989) An Introduction to chaotic dynamical systems, 2nd edn. Addison‐Wesley, Reading

    Google Scholar 

  23. Durand B, Formenti E, Varouchas G (2003) On undecidability of equicontinuity classification for cellular automata. Discrete Mathematics and Theoretical Computer Science, vol AB. pp 117–128

    Google Scholar 

  24. Edgar GA (1990) Measure, topology and fractal geometry. Undergraduate texts in Mathematics. Springer, New York

    Google Scholar 

  25. Formenti E (2003) On the sensitivity of additive cellular automata in Besicovitch topologies. Theor Comp Sci 301(1–3):341–354

    MathSciNet  Google Scholar 

  26. Formenti E, Grange A (2003) Number conserving cellular automata II: dynamics. Theor Comp Sci 304(1–3):269–290

    MathSciNet  Google Scholar 

  27. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math Syst Theor (now Theor Comp Syst) 1(1):1–49

    MathSciNet  Google Scholar 

  28. Glasner E, Weiss B (1993) Sensitive dependence on initial condition. Nonlinearity 6:1067–1075

    MathSciNet  ADS  Google Scholar 

  29. Guckenheimer J (1979) Sensitive dependence to initial condition for one‐dimensional maps. Commun Math Phys 70:133–160

    MathSciNet  ADS  Google Scholar 

  30. Haeseler FV, Peitgen HO, Skordev G (1992) Linear cellular automata, substitutions, hierarchical iterated system. In: Fractal geometry and Computer graphics. Springer, Berlin

    Google Scholar 

  31. Haeseler FV, Peitgen HO, Skordev G (1993) Multifractal decompositions of rescaled evolution sets of equivariant cellular automata: selected examples. Technical report, Institut für Dynamische Systeme, Universität Bremen

    Google Scholar 

  32. Haeseler FV, Peitgen HO, Skordev G (1995) Global analysis of self‐similarity features of cellular automata: selected examples. Physica D 86:64–80

    MathSciNet  Google Scholar 

  33. Hedlund GA (1969) Endomorphism and automorphism of the shift dynamical system. Math Sy Theor 3:320–375

    MathSciNet  Google Scholar 

  34. Hurd LP, Kari J, Culik K (1992) The topological entropy of cellular automata is uncomputable. Ergodic. Th Dyn Sy 12:255–265

    MathSciNet  Google Scholar 

  35. Hurley M (1990) Ergodic aspects of cellular automata. Ergod Theor Dyn Sy 10:671–685

    MathSciNet  Google Scholar 

  36. Ito M, Osato N, Nasu M (1983) Linear cellular automata over z m . J Comp Sy Sci 27:127–140

    MathSciNet  Google Scholar 

  37. IV Assaf D, Gadbois S (1992) Definition of chaos. Am Math Mon 99:865

    Google Scholar 

  38. Kannan V, Nagar A (2002) Topological transitivity for discrete dynamical systems. In: Misra JC (ed) Applicable Mathematics in Golden Age. Narosa Pub, New Dehli

    Google Scholar 

  39. Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comp Sy Sci 48:149–182

    MathSciNet  Google Scholar 

  40. Kari J (1994) Rice’s theorem for the limit set of cellular automata. Theor Comp Sci 127(2):229–254

    MathSciNet  Google Scholar 

  41. Knudsen C (1994) Chaos without nonperiodicity. Am Math Mon 101:563–565

    MathSciNet  Google Scholar 

  42. Kolyada S, Snoha L (1997) Some aspect of topological transitivity – a survey. Grazer Mathematische Berichte 334:3–35

    MathSciNet  Google Scholar 

  43. Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergo Theor Dyn Sy 17:417–433

    Google Scholar 

  44. Kůrka P (2004) Topological and Symbolic Dynamics, vol 11 of Cours Spécialisés. Société Mathématique de France, Paris

    Google Scholar 

  45. Di Lena P (2006) Decidable properties for regular cellular automata. In: Navarro G, Bertolossi L, Koliayakawa Y (eds) Proceedings of Fourth IFIP International Conference on Theoretical Computer Science, pp 185–196. Springer, Santiago de Chile

    Google Scholar 

  46. Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    MathSciNet  Google Scholar 

  47. Manzini G, Margara L (1999) A complete and efficiently computable topological classification of D‑dimensional linear cellular automata over Z m . Theor Comp Sci 221(1–2):157–177

    MathSciNet  Google Scholar 

  48. Margara L (1999) On some topological properties of linear cellular automata. In: Kutylowski M, Pacholski L, Wierzbicki T (eds) Mathematical Foundations of Computer Science 1999 (MFCS99). Lecture Notes in Computer Science, vol 1672. Springer, Berlin, pp 209–219

    Google Scholar 

  49. Moothathu TKS (2005) Homogenity of surjective cellular automata. Discret Contin Dyn Syst 13:195–202

    Google Scholar 

  50. Morris G, Ward T (1998) Entropy bounds for endomorphisms commuting with k actions. Israel J Math 106:1–12

    MathSciNet  Google Scholar 

  51. Nasu M (1995) Textile Systems for Endomorphisms and automorphisms of the shift, vol 114 of Memoires of the American Mathematical Society. American Mathematical Society, Providence

    Google Scholar 

  52. Pesin YK (1997) Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago

    Google Scholar 

  53. Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indag Math 4:203–210

    MathSciNet  Google Scholar 

  54. Shereshevsky MA, Afraimovich VS (1993) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dynam 1(1):91–98

    MathSciNet  Google Scholar 

  55. Sutner K (1999) Linear cellular automata and de Bruijn automata. In: Delorme M, Mazoyer J (eds) Cellular Automata, a Parallel Model, number 460 in Mathematics and Its Applications. Kluwer, Dordrecht

    Google Scholar 

  56. Takahashi S (1992) Self‐similarity of linear cellular automata. J Comp Syst Sci 44:114–140

    Google Scholar 

  57. Theyssier G (2007) Personal communication

    Google Scholar 

  58. Vellekoop M, Berglund R (1994) On intervals, transitivity = chaos. Am Math Mon 101:353–355

    MathSciNet  Google Scholar 

  59. Walters P (1982) An Introduction to Ergodic Theory. Springer, Berlin

    Google Scholar 

  60. Weiss B (1971) Topological transitivity and ergodic measures. Math Syst Theor 5:71–5

    ADS  Google Scholar 

  61. Willson S (1984) Growth rates and fractional dimensions in cellular automata. Physica D 10:69–74

    MathSciNet  ADS  Google Scholar 

  62. Willson S (1987) Computing fractal dimensions for additive cellular automata. Physica D 24:190–206

    MathSciNet  ADS  Google Scholar 

  63. Willson S (1987) The equality of fractional dimensions for certain cellular automata. Physica D 24, 179–189

    MathSciNet  ADS  Google Scholar 

  64. Wolfram S (1986) Theory and Applications of Cellular Automata. World Scientific, Singapore

    Google Scholar 

Books and Reviews

  1. Akin E (1993) The general topology of dynamical systems. Graduate Stud. Math 1 Am Math Soc, Providence

    Google Scholar 

  2. Akin E, Kolyada S (2003) Li-Yorke sensitivity. Nonlinearity 16:1421–1433

    MathSciNet  ADS  Google Scholar 

  3. Block LS, Coppel WA (1992) Dynamics in One Dymension. Springer, Berlin

    Google Scholar 

  4. Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge

    Google Scholar 

  5. Kitchens PB (1997) Symbolic dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Universitext. Springer, Berlin

    Google Scholar 

  6. Kolyada SF (2004) Li-yorke sensitivity and other concepts of chaos. Ukr Math J 56(8):1242–1257

    MathSciNet  Google Scholar 

  7. Lind D, Marcus B (1995) An Introduction to Symbolic Dynamics and Coding. Cambidge University Press, Cambidge

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Interlink/MIUR project “Cellular Automata: Topological Properties, Chaos and Associated FormalLanguages”, by the ANR Blanc Project “Sycomore” and by the PRIN/MIUR project “Formal Languages and Automata: Mathematical andApplicative Aspects”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Cervelle, J., Dennunzio, A., Formenti, E. (2009). Chaotic Behavior of Cellular Automata. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_65

Download citation

Publish with us

Policies and ethics