Skip to main content

Chaotic Dynamics in Nonequilibrium Statistical Mechanics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 168 Accesses

Definition of the Subject

For most of its history, non‐equilibrium statistical mechanics has producedmathematical descriptions of irreversible processes by invoking one or another stochasticassumptions in order to obtain useful equations. Central to our understanding of transport influids, for example, are random walk processes, which typically are described by stochasticequations. These in turn lead to the Einstein relation for diffusion, and its generalizations to other transportprocesses. This relation, as formulated by Einstein, states that the mean square displacementof a diffusing particle grows linearly in time with a proportionality constant givenby the coefficient of diffusion. If we assume that such a description applies tomechanical systems of many particles, we must explain the origins of irreversibility indeterministic – and time reversible – mechanical systems, and we mustlocate the source of stochasticity that is invoked to derive transport equations. For...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chaotic systems:

The time evolution of a deterministic mechanical system defines a trajectory in the phase space of all the generalized coordinates and generalized momenta. Consider two infinitesimally separated points that lie on two different trajectories in this phase space. If these two trajectories typically separate exponentially with time, the systems is called chaotic provided the set of all points with an exponentially separating partner is of positive measure.

Chaotic hypothesis:

The hypothesis that systems of large numbers of particles interacting with short ranged forces can be treated mathematically as if the system were chaotic with no pathologies in the mathematical description of the systems' trajectories in phase space.

Dynamical systems theory:

The mathematical theory of the time evolution in phase space, or closely related spaces, of a deterministic system, such as a mechanical system obeying Hamiltonian equations of motion.

Ergodic systems:

A mechanical system is called ergodic if a typical trajectory in a phase space of finite total measure spends a fraction of its time in a set which is equal to the ratio of the measure of the set to the total measure of the phase space.

Escape rate formula:

Consider a chaotic dynamical system with a phase space constructed in such a way that the phase space has some kind of an absorbing boundary. The set of points, \( { {\mathcal{R}} } \), in the phase space such that trajectories through them never escape through the absorbing boundary either in the forward or the backward motion is called a repeller . One can define a set of Lyapunov exponents , \( { \lambda_i({\mathcal{R}}) } \) and a Kolmogorov–Sinai entropy, \( { h_\text{KS}({\mathcal{R}}) } \) for motion on the repeller. Dynamical systems theory shows that the rate of escape, γ, of points, not on the repeller, through the boundary is given by

$$ \gamma = \sum_{i}\lambda^{+}({\mathcal{R}}) - h_\text{KS}({\mathcal{R}})\:, $$
(1)

where the sum is over all of the positive Lyapunov exponents on the repeller.

Gaussian thermostats:

A dynamical friction acting on the particles in a mechanical system which keeps the total energy, or the total kinetic energy of the system at a fixed value. It was invented by Gauss as the simplest solution to the problem of finding the equations of motion for a mechanical system with a constraint of fixed energy.

Gelfand triplet:

An operator with right and left hand eigenfunctions, possibly defined in different function spaces, and an inner product of one function from the right space and one from the left space. Generally one of these spaces contains singular functions such as Schwartz distributions and the other contains sufficiently smooth functions so that the inner product is well defined. The term rigged Hilbert space is also used to denote a Gelfand triplet.

Hyperbolic dynamical system:

A chaotic system where the tangent space to almost all trajectories in its phase space can be separated into well‐defined stable and unstable manifolds, that intersect each other transversally.

Kolmogorov–Sinai entropy per unit time:

A measure of the rate at which information about the initial point of a chaotic trajectory is produced in time. The exponential separation of trajectories in phase space, characteristic of chaotic motion, implies that trajectories starting at very close-by, essentially indistinguishable, initial points will eventually be distinguishable. Hence as time evolves we can specify more precisely the initial point of the trajectory. Pesin has proved that for closed, hyperbolic systems, the Kolmogorov–Sinai entropy is equal to the sum of the positive Lyapunov exponents. The Kolmogorov–Sinai entropy is often called the metric entropy.

Lyapunov exponents:

Lyapunov exponents, \( { \lambda_i } \), are the rates at which infinitesimally close trajectories separate or approach with time on the unstable and stable manifolds of a chaotic dynamical system. For closed phase spaces, that is, no absorbing boundaries present, Pesin theorem states that for hyperbolic dynamical system the Kolmogorov–Sinai entropy, \( { h_\text{KS} } \) is given by the sum of all the positive Lyapunov exponents.

$$ h_\text{KS}= \sum_i \lambda_i^{+}\:. $$
(2)
Mixing systems:

Mixing systems are dynamical systems with stronger dynamical properties than ergodic systems in the sense that every mixing system is ergodic but the converse is not true. A system is mixing if the following statement about the time development of a set A t is satisfied

$$ \lim_{T\rightarrow\infty}\frac{\mu(A_T\cap B)}{\mu(B)} = \frac{\mu(A)}{\mu({\mathcal E})}\:, $$
(3)

where B is any set of finite measure, and \( { \mu({\mathcal{E}}) } \) is the measure of the full phase space. This statement is the mathematical expression of the fact that for a mixing system, every set of finite measure becomes uniformly distributed throughout the full phase space, with respect to the measure μ.

Normal variables:

Microscopic variables whose values are approximately constant on large regions of the constant energy surface in phase space.

Pseudo‐chaotic systems:

A pseudo‐chaotic system is a dynamical system where the separation of nearby trajectories is algebraic in time, rather than exponential. Pseudo‐chaotic systems are weakly mixing as defined by the relation

$$ \lim_{T\rightarrow \infty}\frac{1}{T}\int_0^T \mskip2mu\mathrm{d}\tau\left[\mu(A_{\tau}\cap B)-\frac{\mu(A)\mu(B)}{\mu({\mathcal E})}\right]=0\:. $$
(4)
Sinai–Ruelle–Bowen (SRB) measure:

SRB measures for a chaotic system are invariant measures that are smooth on unstable manifolds and possibly singular on stable manifolds.

Stable manifold:

A stable manifold about a point P in phase space is the set of points that will approach P at time t approaches positive infinity, that is in the infinite future of the motion.

Transport coefficients:

Transport coefficients characterize the proportionality between the currents of particles, momentum, or energy in a fluid, and the gradients of density, fluid velocity or temperature in the fluid. The coefficients of diffusion, shear and bulk viscosity, and thermal conductivity are transport coefficients, and appear as coefficients of the second order gradients in the Navier–Stokes and similar equations.

Unstable manifold:

An unstable manifold about a point P in phase space is the set of points that will approach P as time approaches negative infinity, that is, as one follows the motion backwards in time to the infinitely remote past.

Bibliography

Primary Literature

  1. Uhlenbeck GE, Ford GW (1963) Lectures in Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Toda M, Kubo R, Saito N (1992) Statistical Physics, vol I. Springer, Berlin

    Google Scholar 

  3. Kubo R, Toda M, Hashitsume (1992) Statistical Physics, vol II. Springer, Berlin

    Google Scholar 

  4. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617

    MathSciNet  ADS  Google Scholar 

  5. Evans DJ, Morriss GM (1990) Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  6. Gaspard P (1998) Chaos, Scattering, and Statistical Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  7. Hoover WG (1999) Time Reversibility, Computer Simulation, and Chaos. World Scientific Publishing Co, Singapore

    Google Scholar 

  8. Dorfman JR (1999) An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  9. Ruelle D (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95:393

    MathSciNet  ADS  Google Scholar 

  10. Gallavotti G (1999) Statistical Mechanics – A Short Treatise. Springer, Berlin

    Google Scholar 

  11. Szasz D (ed) (2000) Hard-ball Systems and the Lorentz Gas. Encyclopedia of mathematical sciences, vol 101. Springer, Berlin

    Google Scholar 

  12. Klages R (2007) Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics. World Scientific Publishing Co, Singapore

    Google Scholar 

  13. Klages R, van Beijeren H, Dorfman JR, Gaspard P (eds) (2004) Microscopic chaos and transport in many‐particle systems. Special Issue of Physica D, vol 187:1–391

    Google Scholar 

  14. Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge

    Google Scholar 

  15. Srednicki M (1999) The approach to thermal equilibrium in quantized chaotic systems. J Phys A 32:1163

    MathSciNet  ADS  Google Scholar 

  16. Evans DJ, Cohen EGD, Morriss GP (1993) Probability of second law violations in shearing steady flows. Phys Rev Lett 71:2401

    ADS  Google Scholar 

  17. Evans DJ, Searles DJ (2002) The fluctuation theorem. Adv Physics 51:1529

    ADS  Google Scholar 

  18. Gallavotti G, Cohen EGD (1995) Dynamical ensembles in stationary states. J Stat Phys 80:931

    MathSciNet  ADS  Google Scholar 

  19. Lebowitz JL, Spohn H (1999) A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics. J Stat Phys 95:333

    MathSciNet  ADS  Google Scholar 

  20. Crooks GE (1999) Entropy fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60:2721

    ADS  Google Scholar 

  21. Kurchan J (1998) Fluctuation theorem for stochastic dynamics. J Phys A 31:3719

    MathSciNet  ADS  Google Scholar 

  22. Mazo RM (2002) Brownian Motion: Fluctuations, Dynamics, and Applications. Oxford University Press, Clarendon

    Google Scholar 

  23. Helfand E (1960) Transport coefficients from dissipation in a canonical ensemble. Phys Rev 119:1

    MathSciNet  ADS  Google Scholar 

  24. Ehrenfest P, Ehrenfest T (1959) The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca

    Google Scholar 

  25. Dettmann CP, Cohen EGD (2000) Microscopic chaos and diffusion. J Stat Phys 101:775

    MathSciNet  Google Scholar 

  26. Bunimovich L, Sinai YG (1981) Statistical properties of the Lorentz gas with periodic configuration of scatterers. Commun Math Phys 78:478

    ADS  Google Scholar 

  27. Gaspard, Baras F (1995) Chaotic scattering and diffusion in the Lorentz gas. Phys Rev E 51:5332

    MathSciNet  ADS  Google Scholar 

  28. Turaev D, Rom-Kedar V (1998) Elliptic islands appearing in near‐ergodic flows. Nonlinearity 11:575

    MathSciNet  ADS  Google Scholar 

  29. Donnay VJ (1996) Elliptic islands in generalized Sinai billiards. Ergod Theory Dyn Syst 16:975

    MathSciNet  Google Scholar 

  30. Walters P (1982) An Introduction to Ergodic Theory. Springer, Berlin

    Google Scholar 

  31. Hopf E (1937) Ergodentheorie. Springer, Berlin

    Google Scholar 

  32. Sinai YG (ed) (1991) Dynamical Systems, A Collection of Papers. World Scientific Publishing Co, Singapore

    Google Scholar 

  33. Simányi N (2004) Proof of the ergodic hypothesis for typical hard ball systems. Ann Henri Poincaré 5:203

    Google Scholar 

  34. Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic Theory. Springer, Berlin

    Google Scholar 

  35. Chapman S, Cowling TG (1970) The Mathematical Theory of Non‐uniform Gases, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  36. Bogoliubov NN (1962) Problems of a dynamical theory in statistical physics. In: Studies in Statistical Mechanics, vol 1. North Holland Publishing Co, Amsterdam

    Google Scholar 

  37. Zaslavsky GM (2007) The Physics of Chaos in Hamiltonian Systems. Imperial College Press, London

    Google Scholar 

  38. Berry MV (1978) Regular and irregular motion. In: Jorna S (ed) Topics in Nonlinear Dynamics: A Tribute to Sir Edward Bullard, American Institute of Physics, New York

    Google Scholar 

  39. Tél T, Gruiz M (2006) Chaotic Dynamics: An Introduction Based on Classical Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  40. Gaspard P (1997) Entropy production in open vol preserving systems. J Stat Phys 88:1215

    MathSciNet  ADS  Google Scholar 

  41. Tasaki S, Gilbert T, Dorfman JR (1998) An analytical construction of the SRB measures for baker-type maps. Chaos 8:424

    MathSciNet  ADS  Google Scholar 

  42. Ott E (2002) Chaos in Dynamical Systems. Cambridge University Press, Cambridge

    Google Scholar 

  43. Gaspard P, Nicolis G (1990) Transport properties, Lyapunov exponents and entropy per unit time. Phys Rev Lett 65:1693

    MathSciNet  ADS  Google Scholar 

  44. Gaspard P (1992) Diffusion, effusion and chaotic scattering. J Stat Phys 68:673

    MathSciNet  ADS  Google Scholar 

  45. Dorfman JR, Gaspard P (1995) Chaotic scattering theory of transport and reaction‐rate coefficients. Phys Rev E 51:28

    MathSciNet  ADS  Google Scholar 

  46. Gaspard P, Dorfman JR (1995) Chaotic scattering theory, thermodynamic formalism, and transport coefficients. Phys Rev E 52:3525

    MathSciNet  ADS  Google Scholar 

  47. Viscardy S, Gaspard P (2003) Viscosity in the escape‐rate formalism. Phys Rev E 68:041205

    MathSciNet  ADS  Google Scholar 

  48. Evans DJ, Cohen EGD, Morriss GP (1990) Viscosity of a simple liquid from its maximal Lyapunov exponents. Phys Rev A 42:5990

    ADS  Google Scholar 

  49. Hoover WG, Posch HA (1994) Second‐law irreversibility and phase space dimensionality loss from time‐reversible nonequilibrium steady‐state Lyapunov spectra. Phys Rev E 49:1913

    ADS  Google Scholar 

  50. Dorfman JR, Gaspard P, Gilbert T (2002) Entropy production of diffusion in spatially periodic deterministic systems. Phys Rev E 66:026110

    MathSciNet  ADS  Google Scholar 

  51. Gaspard P (2004) Time reversed dynamical entropy and irreversibility in Markovian random processes. J Stat Phys 117:599

    MathSciNet  ADS  Google Scholar 

  52. Gaspard P (2006) Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics. Phys A 369:201

    MathSciNet  Google Scholar 

  53. Tél T, Vollmer J (2000) Entropy balance, multibaker maps, and the dynamics of the Lorentz gas. In: Szasz D (ed) Hard Ball Systems and the Lorentz Gas. Springer, Berlin

    Google Scholar 

  54. Vollmer J (2002) Chaos, spatial extension, transport, and non‐equilibrium thermodynamics. Phys Rep 372:131

    MathSciNet  ADS  Google Scholar 

  55. van Zon R, Cohen EGD (2004) Extended heat fluctuation theorems for a system with deterministic and stochastic forces. Phys Rev E 69:056121

    ADS  Google Scholar 

  56. Gaspard P, Rice SA (1989) Scattering from a classically chaotic repeller. J Chem Phys 90:2225

    MathSciNet  ADS  Google Scholar 

  57. Gaspard P (1993) What is the role of chaotic scatttering in irreversible processes? Chaos 3:427

    MathSciNet  ADS  Google Scholar 

  58. Dorfman JR, van Beijeren H (1997) Physica A 240:12

    ADS  Google Scholar 

  59. Tél T, Vollmer J, Breymann W (1996) Transient chaos: The origin of chaos in driven systems. Europhys Lett 35:659

    Google Scholar 

  60. Claus I, Gaspard P (2000) Microscopic chaos and reaction‐diffusion processes in the periodic Lorentz gas. J Stat Phys 101:161

    ADS  Google Scholar 

  61. Claus I, Gaspard P, van Beijeren H (2004) Fractals and dynamical chaos in a random 2D Lorentz gas with sinks. Physica D 187:146

    MathSciNet  ADS  Google Scholar 

  62. Bunimovich LA, Demers MF (2005) Deterministic models of the simplest chemical reactions. J Stat Phys 120:239

    MathSciNet  ADS  Google Scholar 

  63. van Beijeren H, Dorfman JR (1995) Lyapunov exponents and Kolmogorov–Sinai entropy for the Lorentz gas at low densities. Phys Rev Lett 74:4412, erratum 77:1974

    ADS  Google Scholar 

  64. van Beijeren, Latz A, Dorfman JR (2001) Chaotic Properties of dilute, two and three dimensional random Lorentz gases II: open systems. Phys Rev E 63:016312

    ADS  Google Scholar 

  65. van Zon R, van Beijeren H, Dorfman JR (2000) Kinetiic theory estimates for the Kolmogorov–Sinai entropy and the largest Lyapunov exponents for dilute, hard ball gases and for dilute, random Lorentz gases. In: Szasz D (ed) Hard Ball Systems and the Lorentz Gas. Springer, Berlin

    Google Scholar 

  66. Evans DJ, Hoover WG, Failor BH, Moran B, Ladd AJC (1983) Nonequilibrium molecular dynamics via Gauss’ principle of least constraint. Phys Rev A 28:1016

    ADS  Google Scholar 

  67. Posch HA, Hoover WG (1988) Lyapunov instability of dense Lennard–Jones fluids. Phys Rev A 38:473

    ADS  Google Scholar 

  68. Posch HA, Hoover WG (1989) Equilibrium and non‐equilibrium Lyapunov spectra for dense fluids and solids. Phys Rev A 39:2175

    ADS  Google Scholar 

  69. Chernov NI, Eyink GL, Lebowitz JL, Sinai YG (1993) Steady state electrical conduction in the periodic Lorentz gas. Commun Math Phys 154:569

    MathSciNet  ADS  Google Scholar 

  70. Baranyi A, Evans DJ, Cohen EGD (1993) Field‐dependent conductivity and diffusion in a two‐dimensional Lorentz gas. J Stat Phys 70:1085

    ADS  Google Scholar 

  71. Evans DJ, Cohen EGD, Searles DJ, Bonetto F (2000) Note on the Kaplan–Yorke dimension and linear transport coefficients. J Stat Phys 101:17

    MathSciNet  ADS  Google Scholar 

  72. Dellago C, Glatz L, Posch H (1995) Lyapunov spectrum of the driven Lorentz gas. Phys Rev E 52:4817

    MathSciNet  ADS  Google Scholar 

  73. Dellago C Posch HA, Hoover WG (1996) Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. Phys Rev E 53:1485

    ADS  Google Scholar 

  74. Dettmann CP (2000) The Lorentz Gas: A paradigm for nonequilibrium steady states. In: Szasz D (ed) Hardball Systems and the Lorentz Gas. Springer, Berlin

    Google Scholar 

  75. Posch HA, Hirshl R (2000) Simulation of billiards and hard body fluids. In: Szasz D (ed) Hard Ball Systems and the Lorentz Gas. Springer, Berlin

    Google Scholar 

  76. Dettmann CP, Morriss GP (1996) Proof of Lyapunov exponent pairing for systems at constant kinetic energy. Phys Rev E 53:R5545

    ADS  Google Scholar 

  77. Wojtkowski M, Liverani C (1998) Conformally Symplectic Dynamics and the symmetry of the Lyapunov spectrum. Commun Math Phys 194:7

    MathSciNet  ADS  Google Scholar 

  78. Bohm A, Gadella M (1990) Dirac Kets, Gamow Vectors and Gelfand Triplets: The Rigged Hilbert Space Formulation of Quantum Mechanics. Springer, Berlin

    Google Scholar 

  79. Pollicott M (1985) On the rate of mixing of Axiom-A flows. Inventiones Mathematicae 81:413

    MathSciNet  ADS  Google Scholar 

  80. Pollicott M (1986) Meromorphic extensions of generalized zeta functions. Inventiones Mathematicae 85:147

    MathSciNet  ADS  Google Scholar 

  81. Ruelle D (1986) Resonances of chaotic dynamical systems. Phys Rev Lett 56:405

    MathSciNet  ADS  Google Scholar 

  82. Ruelle D (1986) Locating Resonances for Axiom-A dynamical systems. J Stat Phys 44:281

    MathSciNet  ADS  Google Scholar 

  83. Dörfle M (1985) Spectrum and eigenfunctions of the Frobenius–Perron operator for the tent map. J Stat Phys 40:93

    Google Scholar 

  84. Gaspard P (1992) r-adic one dimensional maps and the Euler summation formula. J Phys A 25:L483

    MathSciNet  ADS  Google Scholar 

  85. Gaspard P (1992) Diffusion in uniformly hyperbolic one dimensional maps and Appell polynomials. Phys Lett A 168:13

    MathSciNet  ADS  Google Scholar 

  86. Fox RF (1997) Construction of the Jordan basis for the baker map. Chaos 7:254

    MathSciNet  ADS  Google Scholar 

  87. Gaspard P (1996) Hydrodynamic modes as singular eigenstates of Liouvillian dynamics: Deterministic diffusion. Phys Rev E 53:4379

    MathSciNet  ADS  Google Scholar 

  88. Gilbert T, Dorfman JR, Gaspard P (2001) Fractal dimension of the hydrodynamic modes of diffusion. Nonlinearity 14:339

    MathSciNet  ADS  Google Scholar 

  89. Gaspard P, Claus I, Gilbert T, Dorfman JR (2001) Fractality of hydrodynamic modes of diffusion. Phys Rev Lett 86:1506

    ADS  Google Scholar 

  90. Fox RF (1998) Entropy evolution for the baker map. Chaos 8:462

    MathSciNet  ADS  Google Scholar 

  91. Goldstein S, Lebowitz JL, Sinai YG (1998) Remark on the (Non)convergence of ensemble densities in dynamical systems. Chaos 8:393

    MathSciNet  ADS  Google Scholar 

  92. van Zon R, van Beijeren H, Dellago C (1998) Largest Lyapunov exponent for many‐particle systems at low densities. Phys Rev Lett 80:2035

    ADS  Google Scholar 

  93. de Wijn A, van Beijeren H (2004) Goldstone modes in Lyapunov spectra of hard sphere systems. Phys Rev E 70:016207

    ADS  Google Scholar 

  94. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2960

    Google Scholar 

  95. Haake F (2001) Quantum Signatures of Chaos. Springer, Berlin

    Google Scholar 

  96. Stöckmann H-J (1999) Quantum Chaos: An Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  97. Wojcik D (2006) Quantum maps with spatial extent: a paradigm for lattice quantum walks. Int J Mod Phys B 20:1969

    ADS  Google Scholar 

  98. Lazutkin VF (1993) KAM Theory and Semiclassical Approximations to Wave Functions. Springer, Berlin

    Google Scholar 

  99. Berry MV (1977) Regular and irregular wave functions. J Phys 10:2083

    MathSciNet  ADS  Google Scholar 

  100. van Kampen N (1988) Ten theorems about quantum mechanical measurements. Physica A 153:97

    MathSciNet  ADS  Google Scholar 

  101. Gutkin E (1996) Billiards in polygons: A survery of recent results. J Stat Phys 83:7

    MathSciNet  ADS  Google Scholar 

  102. Tabachnikov S (2005) Billiards and Geometry. American Mathematical Society Press, Providence

    Google Scholar 

Books and Reviews

  1. Beck C, Schlögl F (1993) Thermodynamics of Chaotic Systems. Cambridge University Press, Cambridge

    Google Scholar 

  2. Tél T, Gaspard P, Nicolis G (eds) (1998) Focus Issue on Chaos and Irreversibility. Chaos 8(2):309–529

    Google Scholar 

  3. Rom-Kedar V, Zaslavsky G (eds) (2000) Focus Issue on Chaotic Kinetics and Transport. Chaos 10(1):1–288

    Google Scholar 

  4. Casati G, Chirikov B (eds) (1995) Quantum Chaos: Between Order and Disorder. Cambridge University Press, Cambridge

    Google Scholar 

  5. Dorfman JR (1998) Deterministic chaos and the foundation of the kinetic theory of gases. Phys Rep 301:151

    MathSciNet  ADS  Google Scholar 

  6. Garbaczewski P, Olkiewicz R (eds) (2002) Dynamics of Dissipation. Lecture Notes in Physics, vol 597. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

I would like to thank Henk van Beijeren for reading a draft of this article and for his very helpfulremarks. I would also like to thank Rainer Klages for his new book (Reference [12]), which was very helpfulwhen preparing this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Dorfman, J.R. (2009). Chaotic Dynamics in Nonequilibrium Statistical Mechanics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_66

Download citation

Publish with us

Policies and ethics