Skip to main content

Definition of the Subject

Solitons are localized, shape‐preserving waves characterized by robust collisions. First observed as water waves by John Scott Russell  [29] in the Union Canal near Edinburgh and subsequently recreated in the laboratory,solitons arise in a variety of physical systems, as both temporal pulses which counteract dispersion and spatial beams which counteractdiffraction.

Solitons with two components, vector solitons, are computationally universal due to their remarkable collision properties. In this article, wedescribe in detail the characteristics of Manakov solitons, a specific type of vector soliton, and their applications in computing.

Introduction

In this section, we review the basic principles of soliton theory and spotlight relevant experimental results. Interestingly, the phenomena ofsoliton propagation and collision occur in many physical systems despite the diversity of mechanisms that bring about their existence. For this reason,the discussion in this...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Integrable :

This term is generally used in more than one way and in different contexts. For the purposes of this article, a partial differential equation or system of partial differential equations is integrable if it can be solved explicitly to yield solitons (qv).

Manakov system :

A system of two cubic Schrödinger equations where the self- and cross-phase modulation terms have equal weight.

Nonlinear Schrödinger equation :

A partial differential equation that has the same form as the Schrödinger equation of quantum mechanics, with a term nonlinear in the dependent variable, and for the purposes of this article, interpreted classically.

Self- and cross-phase modulation :

Any terms in a nonlinear Schrödinger equation that involve nonlinear functions of the dependent variable of the equation, or nonlinear functions of a dependent variable of another (coupled) equation, respectively.

Solitary wave :

A solitary wave is a wave characterized by undistorted propagation. Solitary waves do not in general maintain their shape under perturbations or collisions.

Soliton :

A soliton is a solitary wave which is also robust under perturbations and collisions.

Turing equivalent :

Capable of simulating any Turing Machine, and hence by Turing's Thesis capable of performing any computation that can be carried out by a sequence of effective instructions on a finite amount of data. A machine that is Turing equivalent is therefore as powerful as any digital computer. Sometimes a device that is Turing equivalent is called “universal.”

Bibliography

  1. Ablowitz MJ, Prinari B, Trubatch AD (2004) Soliton interactions in the vector nls equation. Inverse Problems 20(4):1217–1237

    MathSciNet  ADS  Google Scholar 

  2. Ablowitz MJ, Prinari B, Trubatch AD (2006) Discrete vector solitons: Composite solitons, Yang–Baxter maps and computation. Studies in Appl Math 116:97–133

    MathSciNet  Google Scholar 

  3. AgrawalGP (2001) Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego

    Google Scholar 

  4. Anastassiou C, Segev M, Steiglitz K, Giordmaine JA, Mitchell M, Shih MF, Lan S, Martin J (1999) Energy-exchange interactions between colliding vector solitons. Phys Rev Lett 83(12):2332–2335

    ADS  Google Scholar 

  5. Anastassiou C, Fleischer JW, Carmon T, Segev M, Steiglitz K (2001) Information transfer via cascaded collisions of vector solitons. Opt Lett 26(19):1498–1500

    ADS  Google Scholar 

  6. Barad Y, Silberberg Y (1997) Phys Rev Lett 78:3290

    ADS  Google Scholar 

  7. Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, Vol. 2. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London

    Google Scholar 

  8. Cao XD, McKinstrie CJ (1993) J Opt Soc Am B 10:1202

    ADS  Google Scholar 

  9. Chen ZG, Segev M, Coskun TH, Christodoulides DN (1996) Observation of incoherently coupled photorefractive spatial soliton pairs. Opt Lett 21(18):1436–1438

    ADS  Google Scholar 

  10. Christodoulides DN, Joseph RI (1988) Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt Lett 13:794–796

    ADS  Google Scholar 

  11. Christodoulides DN, Singh SR, Carvalho MI, Segev M (1996) Incoherently coupled soliton pairs in biased photorefractive crystals. Appl Phys Lett 68(13):1763–1765

    ADS  Google Scholar 

  12. Cundiff ST, Collings BC, Akhmediev NN, Soto-Crespo JM, Bergman K, Knox WH (1999) Phys Rev Lett 82:3988

    ADS  Google Scholar 

  13. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3/4):219–253

    MathSciNet  Google Scholar 

  14. Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1: Anomalous dispersion. Appl Phys Lett 23(3):142–144

    ADS  Google Scholar 

  15. Islam MN, Poole CD, Gordon JP (1989) Opt Lett 14:1011

    ADS  Google Scholar 

  16. Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of colliding optical solitons and possible application to computation in bulk media. Phys Rev E 58(5):6752–6758

    ADS  Google Scholar 

  17. Kang JU, Stegeman GI, Aitchison JS, Akhmediev N (1996) Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys Rev Lett 76(20):3699–3702

    ADS  Google Scholar 

  18. Korolev AE, Nazarov VN, Nolan DA, Truesdale CM (2005) Opt Lett 14:132

    ADS  Google Scholar 

  19. Manakov SV (1973) On the theory of two‐dimensional stationary self-focusing of electromagnetic waves. Zh Eksp Teor Fiz 65(2):505–516, [Sov. Phys. JETP 38, 248 (1974)]

    ADS  Google Scholar 

  20. Mano MM (1972) Computer Logic Design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  21. Menyuk CR (1987) Opt Lett 12:614

    ADS  Google Scholar 

  22. Menyuk CR (1988) J Opt Soc Am B 5:392

    ADS  Google Scholar 

  23. Menyuk CR (1989) Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quant Elect 25(12):2674–2682

    ADS  Google Scholar 

  24. Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095–1098

    ADS  Google Scholar 

  25. NishizawaN, Goto T (2002) Opt Express 10:1151-1160

    ADS  Google Scholar 

  26. Radhakrishnan R, Lakshmanan M, Hietarinta J (1997) Inelastic collision and switching of coupled bright solitons in optical fibers. Phys Rev E 56(2):2213–2216

    ADS  Google Scholar 

  27. Rand D, Steiglitz K, Prucnal PR (2005) Signal standardization in collision-based soliton computing. Int J of Unconv Comp 1:31–45

    Google Scholar 

  28. Rand D, Glesk I, Brès CS, Nolan DA, Chen X, Koh J, Fleischer JW, Steiglitz K, Prucnal PR (2007) Observation of temporal vector soliton propagation and collision in birefringent fiber. Phys Rev Lett 98(5):053902

    Google Scholar 

  29. Russell JS (1844) Report on waves. In: Report of the 14th meeting of the British Association for the Advancement of Science, Taylor andFrancis, London, pp 331–390

    Google Scholar 

  30. Shih MF, Segev M (1996) Incoherent collisions between two‐dimensional bright steady-state photorefractive spatial screening solitons. Opt Lett 21(19):1538–1540

    ADS  Google Scholar 

  31. Shor PW (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th Annual Symposium on Foundations ofComputer Science, IEEE Press, Piscataway, pp 124–134

    Google Scholar 

  32. Squier RK, Steiglitz K (1993) 2-d FHP lattice gasses are computation universal. Complex Systems 7:297–307

    Google Scholar 

  33. Steblina VV, Buryak AV, Sammut RA, Zhou DY, Segev M, Prucnal P (2000) Stable self-guided propagation of two optical harmonics coupled by a microwave or a terahertz wave. J Opt Soc Am B 17(12):2026–2031

    ADS  Google Scholar 

  34. Steiglitz K (2000) Time-gated Manakov spatial solitons are computationally universal. Phys Rev E 63(1):016608

    ADS  Google Scholar 

  35. Steiglitz K (2001) Multistable collision cycles of Manakov spatial solitons. Phys Rev E 63(4):046607

    ADS  Google Scholar 

  36. Yang J (1997) Physica D 108:92–112

    MathSciNet  ADS  Google Scholar 

  37. Yang J (1999) Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys Rev E 59(2):2393–2405

    MathSciNet  ADS  Google Scholar 

  38. Zakharov VE, Shabat AB (1971) Exact theory of two‐dimensional self‐focusing and one‐dimensional self‐modulation of waves in nonlinear media. Zh Eksp Teor Fiz 61(1):118–134, [Sov. Phys. JETP 34, 62 (1972)]

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Rand, D., Steiglitz, K. (2009). Computing with Solitons . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_92

Download citation

Publish with us

Policies and ethics