Skip to main content

Interactive Segmentation

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Labeling; Object extraction; Partitioning; Segmentation; Semiautomatic; User-assisted; User-guided

Related Concepts

Dynamic Programming

Definition

Interactive image segmentation is a (near) real-time mechanism for accurately marking/labeling an object of interest based on visual user interface (VUI) specifying seeds, rough delineation, partial labeling, bounding box, or other constraints. Semiautomatic interactive segmentation methods incorporate various generic image cues and/or object-specific feature detectors in order to facilitate acceptable results with minimum user efforts.

Background

The most basic object extraction techniques like thresholding (Fig. 1) and region growing are based on simple but very fast heuristics. The spectrum of applications for such techniques is limited as they are prone to many problems, most notably leaking as in Fig. 2. Despite significant problems, thresholding and region growing are widely known due to their simplicity and speed. For...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Prentice Hall, Harlow

    Google Scholar 

  2. Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. Graph. Models Image Process 60:349–384

    Article  MATH  Google Scholar 

  3. Falcão AX, Udupa JK, Samarasekera S, Sharma S (1998) User-steered image segmentation paradigms: live wire and live lane. Graph Models Image Process 60:233–260

    Article  Google Scholar 

  4. Jermyn IH, Ishikawa H (1999) Globally optimal regions and boundaries. In: International conference on computer vision, Kerkyra, vol II, pp 904–910

    Google Scholar 

  5. Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: International conference on computer vision, Vancouver, vol II, pp 105–112

    Google Scholar 

  6. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70(2):109–131

    Article  Google Scholar 

  7. Rother C, Kolmogorov V, Blake A (2004) Grabcut – interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:307–331

    Article  Google Scholar 

  8. Kolmogorov V, Boykov Y (2005) What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: International conference on computer vision, Beijing

    Google Scholar 

  9. Boykov Y, Kolmogorov V, Cremers D, Delong A (2006) An integral solution to surface evolution PDEs via geo-cuts. In: European conference on computer vision (ECCV), Graz, Austria

    Google Scholar 

  10. Cox IJ, Rao SB, Zhong Y (1996) Ratio regions: a technique for image segmentation. In: International conference on pattern recognition, Vienna, vol II, pp 557–564

    Google Scholar 

  11. Jermyn IH, Ishikawa H (2001) Globally optimal regions and boundaries as minimum ratio weight cycles. PAMI 23(10):1075–1088

    Article  Google Scholar 

  12. Schoenemann T, Cremers D (2007) Introducing curvature into globally optimal image segmentation: minimum ratio cycles on product graphs. In: International conference on computer vision (ICCV), Rio de Janeiro

    Google Scholar 

  13. Boykov Y, Kolmogorov V (2003) Computing geodesics and minimal surfaces via graph cuts. In: International conference on computer vision, Nice, vol I, pp 26–33

    Google Scholar 

  14. Bai X, Wang J, Simons D, Sapiro G (2009) Video SnapCut: Robust video object cutout using localized classifiers. In: ACM transactions on graphics (SIGGRAPH), Yokohama

    Google Scholar 

  15. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    Article  MATH  Google Scholar 

  16. Kolmogorov V, Boykov Y, Rother C (2007) Applications of parametric maxflow in computer vision. In: International conference on computer vision (ICCV), Rio de Janeiro

    Google Scholar 

  17. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  18. Li K, Wu X, Chen DZ, Sonka M (2006) Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans Pattern Anal Pattern Recognit (PAMI) 28(1):119–134

    Article  Google Scholar 

  19. Delong A, Boykov Y (2009) Globally optimal segmentation of multi-region objects. In: International conference on computer vision (ICCV), Kyoto

    Google Scholar 

  20. Felzenszwalb PF, Veksler O (2010) Tiered scene labeling with dynamic programming. In: IEEE conference on computer vision and pattern recognition (CVPR), San Francisco

    Google Scholar 

  21. Chan T, Esedoglu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66(5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  22. Pock T, Chambolle A, Cremers D, Bischof H (2009) A convex relaxation approach for computing minimal partitions. In: IEEE conference on computer vision and pattern recognition (CVPR), Miami

    Google Scholar 

  23. Appleton B, Talbot H (2006) Globally minimal surfaces by continuous maximal flows. IEEE Trans Pattern Anal Pattern Recognit 28(1):106–118

    Article  Google Scholar 

  24. Yuan J, Bae E, Tai XC (2010) A study on continuous max-flow and min-cut approaches. In: IEEE conference on computer vision and pattern recognition (CVPR), San Francisco

    Google Scholar 

  25. Kass M, Witkin A, Terzolpoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  26. Amini AA, Weymouth TE, Jain RC (1990) Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Mach Intell 12(9):855–867

    Article  Google Scholar 

  27. Cohen LD, Cohen I (1993) Finite element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans Pattern Anal Mach Intell 15(11):1131–1147

    Article  Google Scholar 

  28. Isard M, Blake A (1998) Active contours. Springer, London

    Google Scholar 

  29. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  30. Yezzi A Jr, Kichenassamy S, Kumar A, Olver P, Tannenbaum A (1997) A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16(2):199–209

    Article  Google Scholar 

  31. Unger M, Pock T, Cremers D, Bischof H (2008) Tvseg - interactive total variation based image segmentation. In: British machine vision conference (BMVC), Leeds, UK

    Google Scholar 

  32. Santner J, Pock T, Bischof H (2010) Interactive multi-label segmentation. In: Asian conference on computer vision (ACCV), Queenstown

    Google Scholar 

  33. Malladi R, Sethian J (1998) A real-time algorithm for medical shape recovery. In: International conference on computer vision (ICCV), Bombay, pp 304–310

    Google Scholar 

  34. Bai X, Sapiro G (2007) A geodesic framework for fast interactive image and video segmentation and matting. In: IEEE international conference on computer vision (ICCV), Rio de Janeiro

    Google Scholar 

  35. Criminisi A, Sharp T, Blake A (2008) Geos: geodesic image segmentation. In: European conference on computer vision (ECCV), Marseille

    Google Scholar 

  36. Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58(3):246–261

    Article  Google Scholar 

  37. Herman GT, Carvalho BM (2001) Multiseeded segmentation using fuzzy connectedness. IEEE Trans Pattern Anal Mach Intell (PAMI) 23(5):460–474

    Article  Google Scholar 

  38. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Pattern Recognit (PAMI) 28(11):1768–1783

    Article  Google Scholar 

  39. Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell (PAMI) 31(8):1362–1374

    Article  Google Scholar 

  40. Couprie C, Grady L, Najman L, Talbot H (2011). Power watersheds: a unifying graph based optimization framework. IEEE transactions on Pattern Analysis and Machine Intelligence (PAMI) 33(7):1384–1399

    Article  Google Scholar 

  41. Williams DJ, Shah M (1992) A fast algorithm for active contours and curvature estimation. Comput Vis Graph Image Process 55(1):14–26

    MATH  Google Scholar 

  42. Veksler O (2008) Star shape prior for graph-cut image segmentation. In: European conference on computer vision (ECCV), Marseille

    Google Scholar 

  43. Felzenszwalb P, Veksler O (2010) Tiered scene labelling with dynamic programming. In: IEEE conference on computer vision and pattern recognition (CVPR), San Francisco

    Google Scholar 

  44. Vicente S, Kolmogorov V, Rother C (2008) Graph cut based image segmentation with connectivity priors. In: IEEE conference on computer vision and pattern recognition (CVPR), Anchorage

    Google Scholar 

  45. Nowozin S, Lampert CH (2009) Global connectivity potentials for random field models. In: IEEE conference on computer vision and pattern recognition (CVPR), Miami

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Boykov, Y. (2014). Interactive Segmentation. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_250

Download citation

Publish with us

Policies and ethics