Skip to main content

Geons

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Recognition-by-components (RBC) theory

Related Concepts

Object Class Recognition (Categorization)

Definition

Geons are a set of less than 50 qualitative 2-D or 3-D part classes derived from permuting a set of four dichotomous and trichotomous properties of a generalized cylinder (GC). The values of these properties are nonaccidental in that they can be resolved from a general viewpoint, e.g., whether the axis of a cylinder is straight or curved. Geons were originally introduced by Biederman [9, 10] as the foundation for his recognition-by-components (RBC) theory for human shape perception, whereby object-centered models are represented as concatenations of geons, and object recognition from a 2-D image proceeds by matching recovered parts, typically segmented at regions of matched concavity, and their relations to object models.

Background

The concept of modeling an object as a composition of generalized cylinders dates back to Binford [18], who spawned a generation of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazareva OF, abd Wasserman EA, Biederman I (2008) Pigeons and humans are more sensitive to nonaccidental than to metric changes in visual objects. Behav Processes 77:199–209

    Google Scholar 

  2. Kayaert G, Biederman I, Vogels R (2005) Representation of regular and irregular shapes in macaque inferotemporal cortex. Cereb Cortex 15:1308–1321

    Article  Google Scholar 

  3. Behrmann M, Peterson MA, Moscovitch M, Suzuki S (2006) Integrative agnosia: deficit in encoding relations between parts. J Exp Psychol Human Percept Perf 32(5):1169–1184

    Article  Google Scholar 

  4. Bergevin R, Levine MD (1988) Recognition of 3-D objects in 2-D line drawings: an approach based on geons. Technical report TR-CIM-88, Center for intelligent machines, McGill University, Nov 1988

    Google Scholar 

  5. Bergevin R, Levine MD (1989) Generic object recognition: building coarse 3D descriptions from line drawings. In: Proceedings, IEEE workshop on interpretation of 3D scenes, Austin, pp 68–74

    Google Scholar 

  6. Bergevin R, Levine MD (1992) Extraction of line drawing features for object recognition. Pattern Recognit 25(3): 319–334

    Article  Google Scholar 

  7. Bergevin R, Levine MD (1992) Part decomposition of objects from single view line drawings. CVGIP: Image Underst 55(1):73–83

    Article  MATH  Google Scholar 

  8. Bergevin R, Levine MD (1993) Generic object recognition: building and matching coarse 3D descriptions from line drawings. IEEE Trans Pattern Anal Mach Intell 15:19–36

    Article  Google Scholar 

  9. Biederman I (1985) Human image understanding: recent research and a theory. Comput Vis Graph Image Process 32:29–73

    Article  Google Scholar 

  10. Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  Google Scholar 

  11. Biederman I (1990) Higher level vision. In: An invitation to cognitive science: visual cognition and action, vol 2. MIT, Cambridge, MA, pp 41–72

    Google Scholar 

  12. Biederman I (2000) Recognizing depth-rotated objects: a review of recent research and theory. Spat Vis 13:241–253

    Article  Google Scholar 

  13. Biederman I, Bar M (1999) One-shot viewpoint invariance in matching novel objects. Vis Res 39:2885–2899

    Article  Google Scholar 

  14. Biederman I, Cooper EE (1991) Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cognit Psychol 23:393–419

    Article  Google Scholar 

  15. Biederman I, Gerhardstein PC (1993) Recognizing depth-rotated objects: evidence and conditions for 3D viewpoint invariance. J Exp Psychol Hum Percept Perform 19: 1162–1182

    Article  Google Scholar 

  16. Biederman I, Ju G (1988) Surface vs. edge-based determinants of visual recognition. Cognit Psychol 20:38–64

    Article  Google Scholar 

  17. Biederman, I, Yue, X, Davidoff J (2009) Representation of shape in individuals from a culture with minimal exposure to regular simple artifacts: sensitivity to nonaccidental vs. metric properties. Psychol Sci 20:1437–1442

    Article  Google Scholar 

  18. Binford TO (1971) Visual perception by computer. In: Proceedings, IEEE conference on systems and control, Miami

    Google Scholar 

  19. Borges D, Fisher R (1997) Class-based recognition of 3d objects represented by volumetric primitives. Image Vis Comput 15(8):655–664

    Article  Google Scholar 

  20. Brooks R (1983) Model-based 3-D interpretations of 2-D images. IEEE Trans Pattern Anal Mach Intell 5(2): 140–150

    Article  Google Scholar 

  21. Cant JS, Goodale MA (2009) Asymmetric interference between the perception of shape and the perception of surface properties. J Vis 9(13):11–20

    Article  Google Scholar 

  22. Dickinson S (2009) The evolution of object categorization and the challenge of image abstraction. In: Dickinson S, Leonardis A, Schiele B, Tarr M (eds) Object categorization: computer and human vision perspectives. Cambridge University Press, New York, pp 1–37

    Chapter  Google Scholar 

  23. Dickinson S, Bergevin R, Biederman I, Eklundh J-O, Jain A, Munck-Fairwood R, Pentland A (1997) Panel report: the potential of geons for generic 3-D object recognition. Image Vis Comput 15(4):277–292

    Article  Google Scholar 

  24. Dickinson S, Christensen H, Tsotsos J, Olofsson G (1997) Active object recognition integrating attention and viewpoint control. Comput Vis Image Underst 67(3): 239–260

    Article  Google Scholar 

  25. Dickinson S, Metaxas D (1994) Integrating qualitative and quantitative shape recovery. Int J Comput Vis 13(3): 1–20

    Article  Google Scholar 

  26. Dickinson S, Metaxas D, Pentland A (1997) The role of model-based segmentation in the recovery of volumetric parts from range data. IEEE Trans Pattern Anal Mach Intell 19(3):259–267

    Article  Google Scholar 

  27. Dickinson S, Pentland A, Rosenfeld A (1990) A representation for qualitative 3-D object recognition integrating object-centered and viewer-centered models. In: Leibovic K (ed) Vision: a convergence of disciplines. Springer, New York, pp 398–421

    Google Scholar 

  28. Dickinson S, Pentland A, Rosenfeld A (1992) From volumes to views: an approach to 3-D object recognition. CVGIP: Image Underst 55(2):130–154

    Article  MATH  Google Scholar 

  29. Dickinson S, Pentland A, Rosenfeld A (1992) 3-D shape recovery using distributed aspect matching. IEEE Trans Pattern Anal Mach Intell 14(2):174–198

    Article  Google Scholar 

  30. Du L, Munck-Fairwood R (1993) A formal definition and framework for generic object recognition. In: Proceedings, 8th Scandinavian conference on image analysis, University of Tromsø, Norway

    Google Scholar 

  31. Eklundh J-O, Olofsson G (1992) Geon-based recognition in an active vision system. In: ESPRIT-BRA 3038, vision as process. Springer-Verlag ESPRIT Series

    Google Scholar 

  32. Fairwood R (1991) Recognition of generic components using logic-program relations of image contours. Image Vis Comput 9(2):113–122

    Article  Google Scholar 

  33. Ferrari V, Jurie F, Schmid C (2010) From images to shape models for object detection. Int J Comput Vis 87(3): 284–303

    Article  Google Scholar 

  34. Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vis Res 41(10–11):1409–1422

    Article  Google Scholar 

  35. Hayworth KJ, Biederman I (2006) Neural evidence for intermediate representations in object recognition. Vis Res 46:4024–4031

    Article  Google Scholar 

  36. Hayworth KJ, Lescroart MD, Biederman I (2011) Visual relation encoding in anterior LOC. J Exp Psychol Human Percept Perf 37(4):1032–1050

    Article  Google Scholar 

  37. Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99: 480–517

    Article  Google Scholar 

  38. Hummel JE, Biederman I, Gerhardstein P, Hilton H (1988) From edges to geons: a connectionist approach. In: Proceedings, connectionist summer school, Carnegie Mellon University, pp 462–471

    Google Scholar 

  39. Jacot-Descombes A, Pun T (1992) A probabilistic approach to 3-D inference of geons from a 2-D view. In: Proceedings, SPIE applications of artificial intelligence X: machine vision and robotics, Orlando pp 579–588

    Google Scholar 

  40. Kayaert G, Biederman I, Op de Beeck H, Vogels R (2005) Tuning for shape dimensions in macaque inferior temporal cortex. Eur J Neurosci 22:212–224

    Article  Google Scholar 

  41. Kayaert G, Biederman I, Vogels R (2003) Shape tuning in macaque inferior temporal cortex. J Neurosci 23: 3016–3027

    Google Scholar 

  42. Lades M, Vorbruggen JC, Buhmann J, Lange J, von der Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42:300–311

    Article  Google Scholar 

  43. Lescroart MD, Biederman I, Yue X, Davidoff J (2010) A cross-cultural study of the representation of shape: sensitivity to underlying generalized-cone dimensions. Vis Cogn 18(1):50–66

    Article  Google Scholar 

  44. Marr D, Nishihara H (1978) Representation and recognition of the spatial organization of three-dimensional shapes. R Soc Lond B 200:269–294

    Article  Google Scholar 

  45. Nevatia R, Binford TO (1977) Description and recognition of curved objects. Artif Intell 8:77–98

    Article  MATH  Google Scholar 

  46. Pentland A (1986) Perceptual organization and the representation of natural form. Artif Intell 28:293–331

    Article  MathSciNet  Google Scholar 

  47. Pilu M, Fisher RB (1996) Recognition of geons by parametric deformable contour models. In: Proceedings, European conference on computer vision (ECCV), LNCS, Springer, Cambridge, UK, April 1996, pp 71–82

    Google Scholar 

  48. Raja N, Jain A (1992) Recognizing geons from superquadrics fitted to range data. Image Vis Comput 10(3):179–190

    Article  Google Scholar 

  49. Raja N, Jain A (1994) Obtaining generic parts from range images using a multi-view representation. CVGIP: Image Underst 60(1):44–64

    Article  Google Scholar 

  50. Sala P, Dickinson S (2010) Contour grouping and abstraction using simple part models. In: Proceedings, European conference on computer vision (ECCV) Crete, Greece, Sept 2010

    Google Scholar 

  51. Ulupinar F, Nevatia R (1993) Perception of 3-D surfaces from 2-D contours. IEEE Trans Pattern Anal Mach Intell 15:3–18

    Article  Google Scholar 

  52. Vogels R, Biederman I, Bar M, Lorincz A (2001) Inferior temporal neurons show greater sensitivity to nonaccidental than metric differences. J Cogn Neurosci 13:444–453

    Article  Google Scholar 

  53. Wu K, Levine MD (1997) 3-D shape approximation using parametric geons. Image Vis Comput 15(2):143–158

    Article  Google Scholar 

  54. Zerroug M, Nevatia R (1996) Volumetric descriptions from a single intensity image. Int J Comput Vis 20(1/2):11–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Dickinson, S.J., Biederman, I. (2014). Geons. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_431

Download citation

Publish with us

Policies and ethics