Skip to main content

Underwater Effects

  • Reference work entry
  • First Online:
Computer Vision
  • 441 Accesses

Synonyms

Inherent optical properties; Underwater light field; Underwater radiative transfer processes

Related Concepts

Illumination Estimation, Illuminant Estimation;

Radiance

Definition

Both scattering and absorption processes are dominant effects that determine the propagation of light in water and limit the ability to see or form images. These are characterized by inherent optical properties (IOPs) of the medium, which can be related to imaging theoretical parameters such and modulation transfer function (MTF) and point spread function (PSF). Underwater vision is affected by differences in the radiance distribution, which is an apparent optical property (AOP). Specially developed sensor systems are required to extend range over which visual information can be obtained.

Background

Observation and exploration of the underwater realm has been of interest since ancient times and has forged the development of many technological advances, for example:

  • Conventional imaging methods that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kocak DM, Caimi FM (2005) The current art of underwater imaging-with a Glimpse of the past and vision of the future. Mar Tech Soc J 39(3):5–26

    Article  Google Scholar 

  2. Kocak DM, Caimi FM (2001) Computer vision in ocean engineering. In: El-Hawary F (ed) Ocean engineering handbook. CRC, Boca Raton, pp 20–43

    Google Scholar 

  3. Jaffe JS, McLean J, Strand MP, Moore KD (2001) Underwater optical imaging: status and prospects. Oceanography 14(3):66–76

    Article  Google Scholar 

  4. . Olsson M (1999) Undersea imaging. In: MTSJ., State of the technology report – advanced marine technology division. Marine Tech. Soc. Journal, Jaeger J, ed., 33(3): 103–104

    Google Scholar 

  5. Murino V, Trucco A (2000a) Underwater computer vision and pattern recognition. Comput Vis Image Underst 79(1):1–3

    Article  Google Scholar 

  6. . Preisendorfer R (1976) Hydrologic optics vol. 1, introduction. NTISPB-259 793/8ST, Springfield

    Google Scholar 

  7. Jerlov NG (1968) Optical Oceanography. Elsevier, Amsterdam. London, New York

    Google Scholar 

  8. Smith RC, Baker KS (1996) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20(2):177–184. In: Caimi FM (ed) (1981) Underwater optics. SPIE Milestone Series, vol MS-118

    Article  MathSciNet  Google Scholar 

  9. . Petzold TJ (1972) Volume scattering functions for selected ocean waters. Scripts Inst. Oceanogr., Visibility Laboratory Report SIO 72–78

    Google Scholar 

  10. Mobley CD, Gentili B, Gordon Jin Z, Kattawar GW, Morel A, Reinersman P, Stamnes K, Stavn R (1993) Comparison of numerical models for the computation of underwater light fields. Appl Opt 32(36):7484–7504

    Article  Google Scholar 

  11. Mobley CD, Sundman LK, Boss E (2002) Phase function effects on oceanic light fields. Appl Opt 41(6): 1035–1050

    Article  Google Scholar 

  12. Henyey LC Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83

    Article  Google Scholar 

  13. Fournier G, Jonasz M (1999) Computer based underwater imaging analysis. In: Gilbert G (ed) Airborne and in-water underwater imaging. SPIE, vol 3761. SPIE, Bellingham, pp 62–77 (with corrections)

    Chapter  Google Scholar 

  14. Kattawar GW (1975) A three-parameter analytic phase function for multiple scattering calculations. J Quant Spectrosc Radiat Trans 15:839–849

    Article  Google Scholar 

  15. Hodara H (1973) AGARD lecture series 61 on optics of the Sea. Neuilly Sur Seine, FRANCE, NATO

    Google Scholar 

  16. Wells W, Hodara H, Wilson O (1972) Long range vision in seawater. Final Report ARPA order 1737. TetraTech Inc., Pasadena

    Google Scholar 

  17. Honey RC (1979) Beam spread and point spread functions and their measurement in the ocean. Proc Soc Photo-Opt Instrum Eng 208:242–248

    Google Scholar 

  18. Mertens LE, Replogle FS Jr (1977) Use of point spread and beam spread functions for analysis of imaging systems in water. J Opt Soc Am 67:1105–1117

    Article  Google Scholar 

  19. McLean JW, Crawford DR, Hindman CL (1987) Limits of small angle scattering theory. Appl Opt 26:2053–2054

    Article  Google Scholar 

  20. Voss KJ Chapin AL (1990) Measurement of the point spread function in the ocean. Appl Opt 29:3638–3642

    Article  Google Scholar 

  21. . Caimi FM (ed) (1996) Underwater optics. SPIE milestone series, pub Soc. Photo-Optical Engrs.vol MS-118.

    Google Scholar 

  22. Hale M, Querry MR (1973) Optical constants of water in the 200-nm–200-μm wavelength region. Appl Opt 12:555–563

    Article  Google Scholar 

  23. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20(2)177–184

    Article  Google Scholar 

  24. . Wells WH (1973) Theory of small angle scattering. In: Optics of the sea. AGARD lecture series, No. 61 (NATO) Paris, NTIS Publication

    Google Scholar 

  25. McLean JW, Voss K (1991) Point spread function in ocean water: comparison between theory and experiment. Appl Opt 30(15):2027–2030

    Article  Google Scholar 

  26. . http://www.oceanopticsbook.info/view/radiative_transfer_theory/level_2/the_vector_radiative_transfer_equation

  27. Giddings TE, Shirron JJ (2009) Numerical simulation of the incoherent electrooptical imaging process in plane-stratified media. Opt Eng 48(12):126001

    Article  Google Scholar 

  28. Measures RM (1992) Laser remote sensing: fundamentals and applications. Krieger, Malabar

    Google Scholar 

  29. . http://oceancolor.gsfc.nasa.gov/CZCS/

  30. . http://oceancolor.gsfc.nasa.gov/SeaWiFS/TEACHERS/INTRO/

  31. . http://modis.gsfc.nasa.gov/data/

  32. . http://oai.dtic.mil/oai/oai?verb=getRecord&metadata Prefix=html&identifier=ADA495178

  33. . Terrie, Gregory E (1995) Applications of hyperspectral data in coastal marine environments. Report Number AD-A302222, NRL/FR/7442–95-9630

    Google Scholar 

  34. Leonard DA, Caputo B, Hoge FE (1979) Remote sensing of subsurface water temperature by raman scattering. Appl Opt 18(11):1732–1745

    Article  Google Scholar 

  35. . Mobley CD (1994) Light and water: radiative transfer in natural waters, Academic. (Out of print, but can be downloaded as a pdf document or obtained on CD from Curtis Mobley)

    Google Scholar 

  36. . Mobley CD, Sundman LK (2008) HydroLight 5 – EcoLight 5 technical documentation (2008). Sequoia Scientific, Inc. Download pdf

    Google Scholar 

  37. Gershun AA (1939) The light field. J Math Phys 18(2): 51–151

    Article  Google Scholar 

  38. . Schechner YY, Karpel N (2004) Clear underwater vision. In: IEEE CVPR 2004, Conference on Computer Vision and Pattern Recognition, Washington DC, 27th June-2nd July, vol 1, pp 536–543

    Google Scholar 

  39. Laux A, Mullen LJ, Cochenour B (2008) A comparison of extended range laser line scan imaging techniques in turbid underwater environments. In: Proceedings of ocean optics XIX, Barga, Italy

    Google Scholar 

  40. Dalgleish FR, Caimi FM, Britton W, Andren CF (2009) Improved LLS imaging performance in scattering-dominant waters. In: Proceeding of SPIE, vol 7317, Ocean Sensing and Monitoring, Orlando, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Caimi, F.M. (2014). Underwater Effects. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_556

Download citation

Publish with us

Policies and ethics