
ELEMENTS OF AN OBJECT-BASED
MODEL FOR DISTRIBUTED AND
MOBILE COMPUTATION*

Jean-Bernard STEFANI, Florence GERMAIN
France Telecom R&D

{jean bernard .stefa n i. florence.germa i n }@francetelecom.fr

Elie NAJM
ENST Paris
najm@res.enstJr

Abstract This paper intro duces an abstract model for distributed and mobile com­
putation, based on a not ion of domains. The model is shown expressive
enough to simulate faithfully several recent distributed process calculi
such as the Mobile Ambient calculus and the DJoin calculus. This in
turn hints at the relevance of the model as a basis for the development
of a primitive formal model for distributed and mobile programming.

Keywords: Distributed and mobile computation, formal model, distributed process
calculi, 7r-calculus, mobile ambients, DJoin calculus.

1. INTRODUCTION
Despite advances, during the last decade, on mobile process calculi,

a primitive model for distributed and mobile programming remains elu­
sive. For this reason, several recent works, e.g. [1, 4, 6, 8, 22], have
introduced distributed process calculi, which aim to capture features
such as the distribution of resources on different locations, process mo­
bility, the impact of failures and security on the behavior of a system,
etc.

These distributed process calculi share several characteristics :

• they are based on so me asynchronous variant ofthe 7f-calculus [13];

*This work ·has been supported in part by the RNRT project MarveJ.

http://dx.doi.org/10.1007/978-0-387-35520-7_21

24

• they introduce a notion of locality to capture different features of
distributed programming.

Despite their similarities, it is difficult to directly compare these cal­
culi, for the notions of localities they introduce obey very different rules,
reflecting the different kinds of phenomena they are intended to cap­
ture (mobility across nodes, failure models, administrative domains, etc).
Apart from [7], which defines (and proves correct) a translation of the
Ambient calculus [4] into the join calculus [6], we know of no systematic
attempt to relate these different models of distributed computation.

This paper intends to fill this void :

1 by defining a more abstract and more general model of distributed,
object-based computationj

2 by showing how these process calculi can be directly and faithfully
simulated using instanees of our model, hinting at the relevanee of
our model as a general model of distributed (and mobile) compu­
tation.

The paper is organized as follows :

• Section 2 motivates the introduetion of the notion of domain as a
central feature of a model for distributed and mobile computation.

• Section 3 introduces our model.

• Section 4 presents faithful simulations of two distributed process
calculi in our model.

• Section 5 identifies perspeetives for further work.

2. DOMAINS
In this section we introduee the notion of domain, and we derive a

number of requirements for a model of distributed computation centered
around this not ion.

2.1. THE NOTION OF DOMAIN
Large distributed systems such as the World Wide Web or wide area

telecommunications networks share several eharaeteristics:

• asynchrony: processing and eommunication in these systems oeeur
at different speeds, without relianee on a common global dock.

• partial failures: parts of a large distributed system may fail inde­
pendently, according to different failure modes.

Object-based model for distributed computation 25

• system partitions: a large distributed system comprises several,
possibly overlapping sub-systems, organized around different con­
tingencies such as location, security, faHure modes, administration
and management.

This suggests that, from a modeling point of view, a distributed sys­
tem should primarHy be understood as a partitioned system. Com­
ponents of a distributed system can be grouped in different, possibly
overlapping sets, generally under the control of a single object or entity.
Adopting the terminology from [9], we shall call domains such sets of
components.

Domains come in many varieties, for instance :

• resource domains, encompassing hardware and software resources
under the control of a single resource manager (e.g. information
processing nodes in a computer network)j

• language domains, delineating address spaces dedicated to the exe­
cut ion of programs written in a single programming language (e.g.
capsules [10] or operating system processes)j

• failure domains, encompassing entities that may fail together, ac­
cording to certain faHure mo des (e.g. faH silent machines)j

• administrative domains, encompassing computing resources under
the control and management of a single authority (e.g. network
management domains) j

• security domains, corresponding to sets of nodes controlled by se­
curity policies and firewallsj

• naming domains, corresponding to sets of entities designated ac­
cording to a given naming policYj

• locations, encompassing entities located at a given address in a
computer networkj

• technology domains, encompassing systems that are buHt with,
or use a common hardware or software technology (e.g. intercon­
nected machines that use a common set of communication proto­
cols).

Notions of ambients in the Ambient calculus [4], of seals in the Seal
calculus [22], of localities in the Join calculus [6], in the 7rll-calculus
[1], and in the D7r-calculus [8], seem to correspond to variants of this
general notion of domain. In these calculi, domains are used to m ake

26

explicit the spatial structure of computations (as Hat or tree-shaped sets
of domains). However they differ in the (implicit) particular behavior
they attach to their respective notion of domains.

These calculi adopt a homogeneous view of domains, each domain be­
ing capable of a single behavior (e.g. with respect to failure or process
migration). In a large distributed system, however, domains of various
kinds coexist. It is thus important, in a model for distributed computa­
tion, to take into account different kinds of domains, with possibly very
different behaviors. This leads us to our first requirement on a model
for distributed computation:

Requirement 1 A model 0/ distributed computation should include, as
a primitive concept, a notion 0/ domain, understood as a means to spa­
tially partition a distributed computation, and should allow the definition
0/ arbitrary domain behaviors.

2.2. BEHAVIOR OF DOMAINS
;,From the examples given above, it appears that a domain can be

characterized by two elements :

• a set of objects belonging to the domain, which we shall call the
content of the domain;

• a controlling object, attached to the domain, which we shall call
the container of the domain.

Let us consider what general requirements apply to these elements.
First, the container of a domain can play the role of a filter with respect
to messages which are sent to the domain's content. This type of behav­
ior is manifest, for instance, in firewalls (containers for security domains),
or in so-called component containers such as e.g. in EJB (Enterprise Java
Beans) [20] or CORBA Components [17]. Modeling network no des with
their protocol machinery, at various levels of abstractions, also requires
the introduction of domains and of their associated containers, capa­
ble of intercepting and processing incoming and outgoing protocol data
units. We record this as

Requirement 2 A domain container should be allowed to intercept and
process messages which are going to, or coming /rom, the domain con­
tent, possibly changing its own state in the process.

Another requirement is for domain containers to evolve exactly as a
standard object, by receiving and sending messages to their environ­
ment. System management applications, for instance, typically require

Object-based model for distributed computation 27

access to domain containers (e.g. for querying the state of a given ma­
chi ne , for shutting it down, for activating it, etc). These applications
furt her illustrate the fact that state changes of a domain container may
cause correlative changes in the domain content. For instance, shut­
ting down a given machine, understood as both a resource domain and
a failure domain, will cause the different computations it supports to
be terminated (and, perhaps, moved to different storage containers in a
"passive" state). We record this as

Requirement 3 A domain container should be allowed to send and re­
ceive messages, thereby changing its state, and possibly causing state
changes in the domain content as well.

A final requirement pertains to the creation of new domains and to
the migration of contents between domains. Dynamic reconfiguration in
an open distributed system implies the ability to introduce new objects
and new subsystems, e.g. to increase the capacity of the system under a
changing load, or to update parts of the system with new (hardware or
software) technology. Modeling mobile systems, i.e. systems with phys­
ically mobile subsystems (portable pes, PDAs, mobile phones, etc) or
mobile software objects (e.g. mobile agents), implies the ability to move
objects between different domains, corresponding to different spatiallo­
cations (e.g. from one radio cell to another, from one host to another).
This translates into the following requirement

Requirement 4 It should be possible to dynamically create new do­
mains, and to move all, or part of a domain content from one domain
to another.

3. MODEL
We introduce in this section an abstract computational model that

takes into account the various requirements identified in section 2 above.
The model is abstract in that it does not provide an effective means to

describe the individual behavior of domains. Instead, the model postu­
lates, for each domain, a behavior description which is expressed in terms
of sets of possible transitions (given by operator B below). However, we
shall see in section 4 below that this model can easily be instantiated to
yield concrete (sub-)calculi. We shall discuss in section 5 perspectives
for the definition of a concrete process calculus based on a notion of
domain.

Our model is both object-based and domain-based in that:

• a distributed system is described, using our model, as a collection
of concurrent, interacting domains (a configuration)j

28

• each domain is, in turn, constituted by the composition of an ob­
ject, the domain container, with a configuration, the domain con­
tent.

The operational semantics of our model is defined in the Chemical
Abstract Machine style [2], using a structural equivalence, =, and a
reduction relation, -+.

3.1. SORTS AND OPERATORS

We postulate the existence of different sorts and operators. We adopt
a postfix notation for operators. Sorts of our model are as folIows:

• N denotes the set of names in our model. Intuitively, each object
in the model exhibits different interfaces (as per the ODP Ref­
erence Model [9, 10]) which are identified by unique names. An
interface constitutes a communication port. We use u, v, and their
decorated variants to refer to names.

• 0 denotes the set of objects in our model. We use w, tu and their
decorated variants to refer to objects.

• M denotes the set of messages in our model. We use m and its
decorated variants to refer to messages, and and its decorated
variants to refer to finite (possibly empty) bags of messages.!

Messages are units of interaction between an object and its environment. In

this paper, we only consider asynchronous message exchange as a means of

communication. An immediate extension of the model would consist in the

introduction of so-called bindings, e.g. along the lines of [15].

• S denotes the set of configurations. We use C, D, E, Fand their
decorated variants to refer to configurations. We assume that S has
two distinguished elements, 0 and ..1, which denote, respectively, an
empty configuration and an invalid configuration. A configuration
corresponds to a parallel composition of domains and messages.
With operators 11 and [] below, an abstract syntax for configura­
tions is given by the following grammar :

C ::= 0 1 ..1 1 m 1 w[C] 1 C 11 C (1)

Operators in our model are (we omit injection operators from 0 into
S, and from M into S) :

1 We also use N to refer to a configuration ml 11 ... 11 mp of messages This is legitimate,
thanks to the associative and commutative properties of the parallel operator, 11.

Object-based model for distributed computation 29

• 11: 5 x 5 -t 5

Operator 11 is the parallel composition operator in our model.

• []:Ox5-t5

Operator [] is a composition operator that constructs a domain
w[C] by associating an object wand a configuration C. w is the
container of the domain w[C], while C is the content of domain
w[C].

• tgt: M -t N

m.tgt denotes the destination of message m.

• arg: M -t (N U 5)*

m.arg denotes arguments (in finite number) of message m. An
argument of a message can be either a name, or a configuration.
We note u_{L) a message with target u and with arguments given
by vector l.

• LI: 0 -t g:Jj(N) 2

w.Ll denotes the set of names born by object w.

• L: 0 -t (5 -t g:Jj(N)).

w.L(C) denotes the set of names born by domain w[C], and which
are visible by its environment.

Operator L is extended into an operator L : 5 -t g:Jj(N) on config­
urations through the following inductive definition:

0.L =0

m.L = U{C.L . CE m.arg}

w[C].L = w.L(C)

(Cl 11 C2).L = Cl.L U C2 .L

A domain w[C] exhibits a number of interfaces which are visible by its envi­

ronments as a set of names (given by w.L(C)). These names may differ from

the names born by configuration C, e.g. we can have w.L(C) n C.L = 0
: a domain's container controls the visibility of the domain's content from

other objects in the environment of the domain. In general, we will also have

w.L2 [0] ::j:. w.Ll • This means that interfaces of an object w may in general

2We use Pf{A) to denote the set of finite subsets of a set A, Bagf{A) to denote the set of
finite multisets built with elements from set A, and p{A) to denote the set of subsets of set
A.

30

be split between internal interfaces, Le. interfaces which are only visible from

the content of a domain w[C], and external interfaces, Le. interfaces which are
visible from the environment of a domain w[C].

• K: 0 --+ (5 --+ Pf(N))

w.K(C) denotes the set ofnames known by domain w[C]. Operator
K is extended into an operator K : 5 --+ Pf(N) on configurations
through the following inductive definition:

- 0.K = 0
- m.K = U{C.K . CE m.arg} U U{m.arg . m.arg E N}

- w[C].K = w.K(C)

- (Cl 11 C2).K = Cl·K U C2. K

• B: 0 --+ (5 --+ p(O x Bagf(M) x 5))

w.B denotes the behavior of object w. Given a configuration C,
the behavior of domain w[C] is defined by a set of possible transi­
tions, Le. of triplets of the form D). In a possible transition

D), is a multiset of messages targeted at names born by
w[C], and D denotes a new configuration, created at the end of
the transition. The behavior of an object must obey certain con­
sistency conditions which are given in Section 3.3. We use t and
its decorated variants to denote possible transitions.

3.2. STRUCTURAL EQUIVALENCE
The structural equivalence between configurations is defined induc­

tively as being the smallest relation satisfying the following rules:

C=.C

C=.D
D=.C

Cl =. C2, C2 =. C3
Cl =. C3

Cl =. C2

Cl 11 D =. C2 11 D

C=.D
w[C] =. w[D]

Vi E {I, ... ,p} . li = ki if li E N li =. ki if li E 5
u(h, ... , lp) =. u(kl, ... , kp)

CIID=.D 11 C

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Object-based model tor distributed computation 31

(Cl 11 C2) 11 C3 == Cl 11 (C2 11 C3) (9)

C 110 == C (10)
C 11 1- == .L (11)

Relation == is an equivalence relation: rules (2), (3), (4). It is also a
congruence on configurations: rules (5), (6), (7). The parallel operator
is associative, commutative, has 0 as a neutral element, and 1- as an
absorbing element: rules (8), (9), (10), (11).

The value of proposition C == 1- is given by the foUowing inductive
definition:

• (0 == 1-) = False

• (m == 1-) = VCEm.arg C == 1- V nCEm.arg C.L =f 0

• (w[C] == 1-) = (w.Ll n C.L =f 0 V C == 1-)

• (Cl 11 C2 == 1-) = (Cl.L n C2.L =f 0 V Cl == 1- V C2 == 1-)

Configuration 1. is a technical artifact which is used to enforce the unicity of (visible)
names in a configuration. The unicity of names in a given configuration C can be
simply stated as : C 1.. Note that the definition above disallows a recursive building
of domains, e.g. in domain w[C], object w cannot appear as a domain container in

C.

3.3. OBJECT BEHAVIOR
Possible transitions associated with the behavior ofan object (as given

by operator B) are subject to certain consistency conditions. Possible
transitions t = (w, N, D) associated with the behavior of an object w
can take two different forms, according to the structure of the resulting
configuration D:

• Standard domain evolution:

D =w'[Elll F (12)

where F is a configuration and w.L l w'.L l .

Intuitively, object w' corresponds to the "new state" of object w after the
transition. Interfaces of an object persist during a transition, which is captured
by the condition W.Ll W'.Ll.

• Domain "passivation":

D = m(w'[E]) 11 F (13)

32

where F is a configuration, m(w'[E]) is a message that has w'[E]
as an argument, and w.LI w'.LI.

Intuitively, in this sort of transition, a domain "passivates" itself into a message,
targeting a known interface. This feature is crucial for the expressive power of
our model.

We shall denote by HI(t, C) the fact that these two possibilities are
allowed:

HI((w,N,D},C) =def 3w',E,F . W.LI w'.LI
1\ (D = w'[E] 11 F V D = 7l"[w'[E]] 11 F)

If t is a possible transition of the behavior of object w with content
C, Le. tE w.B(C), then t must be of the form (w, N, D) and must verify
condition H(t, C), defined by:

H((w, N, D}, C) =def D.K w[C].K U N.K U D.L (14)
1\ N.tgt w[C].L (15)
1\ D J.. (16)

Condition (14) stipulates that names known after a transition must have been

known by the domain prior to the transition, must appear as arguments of incom­
ing messages in N, or must be born by new interfaces created during the transition.
Condition (15) stipulates that the target of incoming messages in a transition are
restricted to names born by the domain. Condition (16) stipulates that the configu­
ration resulting from the transition must respect the unicity constraint on names.

To ensure compatibility with the structural equivalence defined in the
preceding section, condition H2(t, C', N', D') must be verified. Condition
H2(t,C',N',D') is defined thus, with t = (w,N,D):

H2(t,C',N',D') =def tE w.B(C) 1\ C == C' 1\ N == No' 1\ D == D'
::::} (w, N', D') E w.B(C')

Intuitively, H2(t, C', N', D') states that the behavior of an object for a given con­
figuration C remains the same for any equivalent configuration C'.

The consistency condition on object behavior thus takes the form:

Cons(w) =def VC ES Vt E w.B(C) . H(t, C) 1\ HI(t, C)
1\ (VC',N',D' . H2(t,C',N',D'))

3.4. REDUCTION RELATION
In our model, a system corresponds to a transition system whose set

of states is given by 5, and whose transitions are given by the reduction

Object-based model tor distributed computation 33

relation -t, inductively defined as the smallest relation derived using the
following rules:

• Domain evolution:

(w, E w.B(C)

w[C] 11 -t D
provided Cons(w) (17)

This rule stipulates that a domain w[C] evolves in accordance with the (con­
sistently) defined behavior for object w, given configuration C.

• Parallel evolution:

C 11 D "t ..1 C -t C' c' 11 D ..1

C 11 D -t C' 11 D
(18)

This rule stipulates that configurations in parallel can evolve independently,

provided the unicity of names is preserved.

• Evolution of equivalent configurations:

C = D D -t D' D' = C'

C -t C'
(19)

This rule stipulates that evolutions of equivalent configurations are identical.

3.5. DISCUSSION
The model we have just presented, which we shall call the r;, model,

meets in large part the requirements set out in section 2 :

1 The notion of domain is primitive in the r;, model and allows for
arbitrary domain behaviors (as manifested by operator B in the
definition of an object behavior).

2 In the r;, model, a domain container can intercept and process in­
coming and outgoing messages ultimately targeted at the domain
content. This feature is illustrated in the simulations presented in
section 4, e.g. in rules (28) and (30).

3 In the r;, model, a domain container constitutes a a bona-fide ob­
ject, with its own behavior and the capacity to receive and emit
messages. Simulations in section 4 rely heavily on the modeling of

34

a domain container (ambient or DJoin locality) as an object (see
in particular rules (28) to (35), and rules (50) to (55)).

4 Domain creation and domain passivation are integral features of
the K. model, as defined in section 3.3. Again, these features are
crucial for the simulations in section 4, as illustrated e.g. in rules
(28), to (31).

Further evidence in meeting the requirements laid out in Section 2
can be found in the report [18], as well as a more detailed analysis of
the requirements. In addition, it is shown that the K. model constitutes
a conservative extension of the RM-ODP computational model [9], and
that the K. model captures the main constructions involved in concurrent
reflective systems such as ABCL/R [23] and Coda [12].

4. SIMULATIONS
We present in this section faithful simulations, in the K. model, of the

Mobile Ambients calculus [4] and of the DJoin calculus [6, 7]. These
simulations provide a direct characterization of the kinds of domains in­
troduced by these two formalisms (ambients and localities, respectively).
More precisely, they show that, using our model, it is possible to fully
characterize not ions of domains introduced in these calculi as objects
(domain containers) endowed with specific behaviors.

Throughout the section, we use a simplified version of our model,
where w[C].L = W.Ll U C.L, and where w[C].K = w[0].K U C.K.

We describe object behaviors using an operational style, where pos­
sible transitions are given in the form of inference rules. Intuitively, a
rule

Premiss
Configl --+ Config2

describes a possible transition of the object present in configuration
Conjigl, provided the condition captured by Premiss is met.

4.1. SIMULATION OF MOBILE AMBIENTS
For simplicity, we consider the simple ambient calculus (Le. without

communication), as defined in [4]. The simulation of mobile ambients in
our model uses the following elements:

• Every ambient of name n is simulated with an object where
u E N.

Object-based model for distributed computation 35

• We denote by Name the set of names used in the ambient calculus.
We use n, m, and their decorated variants to denote elements of
Name.

• To each name n of the ambient calculus is associated a gateway
object tun, which is required in order to simulate the presence of
multiple ambients with the same name n.

• A simulation of an ambient calculus process makes use of aglobaI
container wo(U, V), which is parameterized with two sets of names
U Name and V N. This object is in charge of managing name
creation.

• We assume given an injection 1f;, from Name into N.

• We use the following distinguished names from N : t, in, out, open,
act, include, extrude.

Let P be an ambient calculus process. A simulation of P in the K,

model is given by function To, which is defined by:

To(P) = wo(U, V)[T(P) IInEU tunDl

where U = {n· nE FV(P)}, et V = 1f;(U).
Function T is defined inductively by:

• T(O) = 0
• T(P I Q) = T(P) 11 T(Q)

• T(!P) = bang[T(P)]

• T(n[P)) = amb(n, P)

• T(in n.P) = 'f/1(n)(in, T(P»

• T(out n.P) = 'f/1(n)(out, T(P»

• T(openn.P) = 'f/1(n) (open, T(P»

• T(vn.P) = new(n, P)

Additional objects used by the simulation are defined below.

(20)

The global containers wo(U, V) are defined by wo(U, V).L = 0 and the
following behavior:

m U u' = U U {m} v' = V U {'f/1(m)}
wo(U, V)[new(n, P)]-+ wo(U', V')[romD 11 T(P{m/n})]

u V U 'f/1(Name) v' = V U {u}
wo(U, V)[amb(n, P)] -+ wo(U, 'f/1(n)(act, u)]

uEV
wo(U, V)[t(gate, C) 11 D] -+ wo(U, V) [u(gate, C) 11 D]

(21)

(22)

(23)

36

wo(U, V)[t(gate, C) 11 D] -+ wo(U, V)[C 11 D]

C -+ C'

wo(U, V)[C] -+ wo(U, V)[C']

wo(U, V)[C] -+ wo(U', V')[C']

wo(U, V)[C 11 D] -+ wo(U', V')[C' 11 D]

wo(U, V)[C] -+ wo(U', V')[C']

wo(U, -+ wo(U',

(24)

(25)

(26)

(27)

Objects are defined by = {u}, and the following behavior:

11 v(in, D)] -+ v(include, 11 D]) (28)

u(include, D) -+ 11 D] (29)

11 v(out, D)]-+ v(extrude, 11 D]) (30)

11 u(extrude, D)] -+ D (31)

u(open, D) -+ €uD 11 C 11 D (32)

C -+ C' (33)
-+

11 wm[DlJ -+ wm[D] (34)

u(gate, D) -+ 11 D] (35)

Object Eu is just defined by Eu.L = {u}. Object new(n, P) is just
defined by new(n, P).L = 0.

Object bang(P) is defined by bang(P).L = 0 and the following behav­
ior:

bang[T(P)] -+ bang[T(P)] 11 T(P) (36)

The gateway objects, W n are defined by wn.L = 1j;(n) and the follow­
ing behavior:

Wn[C]-+ t(gate, wn[C])

Wn[C] 11 "p(n)(act, u) -+ wn[C 11 "p(n)(act, u)]

l = h, ... ,lp h E {include, extrude, open}
Wn[C 11 "p(n)(act,u)] 11 1/J(n) (I) -+ wn[C 111/J(n)(act,u)]11 u(l)

(37)
(38)

(39)

Object-based model tor distributed computation 37

Let be a context from K, and P an ambient calculus process.
Context and process P are said to be compatible if takes the form

= wo(U, V)[lInEu wn[Nn] 11 . lIuEvl EuDl, with "p(U) V, VI V, Nn
is a set of messages such that "p(n)(act, u), u E V, and if P is such that
FV(P) U.

One can then show the following:

Proposition 1 Let P and Q be two ambient calculus processes, such
that P --+ambient Q. Then, for all K contexts such that and P are
compatible, there is a K context [[.], such that [[.] and Q are compatible,
and [[T(Q)].

Proof By induction on the form of derivation contexts in the ambient
calculus. <>

Let us just illustrate a proof step and the way the simulation works.
We consider the following rule from the ambient calculus:

n[inm.P I Q] I m[R] --+ m[R I n[P I Q]] (40)

Let A = n[inm.P I Q] I m[R] and B = m[R I n[P I Q]]. We have the
following derivations, where V' = V u {u, v} :

e[T(A)l
= wo(U, V)[wn[Nnlll wm[Nmlll amb(n, inm.P 11 Q) 11 amb(m, R)l

wo(U, V')[wn[Nnlll wm[Nmlll
1 Q)lll1jJ(n)(act, u) 11

= wo(U, V')[wn[Nnlll wm[Nmlll
11 T(P) 11 T(Q)lll1jJ(n)(act, u) 11 v)l

wo(U, V')[wn[Nn 111jJ(n)(act, u)lll wm[Nm 111jJ(m)(act, v)lll
1jJ(m)(include, 11 T(Q)]) 11

wo(U, V')[wn[Nn 111jJ(n)(act, u)lll wm[Nm 111jJ(m)(act, v)lll
v(include, 11 T(Q)]) 11

wo(U, V')[wn[Nn 111jJ(n)(act,u)lll wm[Nm 111jJ(m)(act,v)lll
11 11 T(Q)]]]

= e'[T(B)l

4.2. SIMULATION OF THE
DJOIN-CALCULUS

We consider the DJoin-calculus as defined in [6, 7]. Simulating this
calculus in our K model involves several elements:

• Each locality aO from the DJoin-calculus, for a an elementary local-
ity, is simulated by a domain AaO. A higher-Ievellocality al ... apO
is simulated by a set of embedded domains Aad· .. [Aap Dl ...].

• To each receiver x of the Djoin-calculus is associated a gateway
object W x . Simulating a definition in the DJoin-calculus involves

38

the creation of gateways for all the names which are defined at the
first level in a Djoin definition D.

• We assume given an injection if> from the set Name of names of
the DJoin-calculus, into N, the set of names of the K. model. if>
associates to each name of the DJoin the name of the gateway or
of the domain that corresponds to this name.

• The simulation of a DJoin calculus process makes use of aglobai
container wo{U, V), which is parameterized by two sets U Name
and V N.

• We use x, y, z to denote a channel in the DJoin calculus, u, ß to
denote a higher level locality in the DJoin, a, b to denote base
levellocality in the DJoin, and n, m to denote arbitrary localities
(concatenations of base levellocalities a, b). We use u, v to denote
names in K., and 1 to denote an arbitrary message argument in K..

• We use the following distinguished names from N : go, act, hab.

Let P be a DJoin-calculus process. We define a simulation of P in K.

with function To, defined as:

To{P) = wo{U, V)[T{P)]

where U = {n . nE FV{P)} and V = {if>{n) . nEU}.
Function T is defined inductively by:
• T(x{y)) = rjJ(x)(rjJ(fj))

• T(Pt I P2) = T(Pt} 11 T(P2)

• T(O) = 0
• T(defDinP) = def(D,P)

• T(J f> P) = prep(J, P)

• T(DI A D2) = T(DI) 11 T(D2)

• T(m[D: PD = loc(m, D, P)

• T(go(a)j P) = go(a, P)

Objects which are used by the simulation are defined below.

(41)

Global containers wo{U, V) are defined by wo{U, V).L = 0, and the
following behavior. In what follows we note

A(D) =lIaEPo Aa [IIbEPJ Ab[' .. [IIbEpN(a) AbO] ...]]
a ... aN(a)_l

with pO = {ao . aOal ... aq E M}, P: = {ak . aOal ... ak ... aq E M, ao ... ak-l =
u}, and N(a) = max{k . P: =1= 0, u = aal ... aq } •

p. = {x t-+ y. y ft u, xE dv(D)} U' = U U ran(p.) V' = V U rjJ(ran(p.))
wo(U, V)[def(D, P)] ++ wo(U', V')[defn(D{y/x }(x,Y)EI" P{y/x }cx,Y)EI') 1

(42)

Object-based model tor distributed computation

wo(U, V)[defn(D, P)] +-t wo(U', V')[T(D) 11 T(P) lI"Ex w"D 11 A(D)]

wo(U, V)[loc(m, D, P)] +-t wo(U, V)[4>(ao)(hab, loc(n, D, P»]

wo(U, V)[loc(a, D, P)] +-t wo(U, V)[4>(a)(hab, T(D) 11 T(P»]

p = {x 1-+ U • xE dv(J), u V U 4>(Name)} V' = V U ran(p)
wo(U, V) [prep(J, P)] +-t wo(U, V')[react(J, P, p) lI"Edv(J) 4>(x)(act, p(x»)])]

C -? C'

wo(U, V)[C] -? wo(U, V)[C']

wo(U, V)[C] -? wo(U', V')[C']

wo(U, V)[C 11 D] -? wo(U', V')[C' 11 D]

wo(U, V)[C] -? wo(U', V')[C']

wo(U, V)[Aa[C]] -? wo(U', V')[Aa[C']]

39

(43)

(44)

(45)

(46)

(47)

(48)

(49)

An object Aa is defined by Aa.L = {ct>(a)} and by the following be­
havior:

C -? C' (50)
Aa[C] -? Aa[C']

Aa[C] II 4>(a)(hab, D) +-t Aa[C 11 D] (51)

uE C.L (52)
Aa[C] 11 u(l) -? Aa[C 11 u(l)]

Aa[C 11 u(l}]-? Aa[C] 11 u(l) (53)

Aa[C 11 go(a, P)] -? cf>(a) (go, Aa[C 11 T(P)]} (54)

Aa[C] 11 4>(a) (go, D) -? Aa[C 11 D] (55)

Objects prep(J, P, p) are defined by prep(J, P, p).L = 0.
Objects react(J,P,p) are defined by react(J,P,p).L = ran(p), and by

the following behavior:

J =1I"Ex x(y} (56)
react(J,P,p) lI"Ex 4>(x)(4>(i)} -? react(J,P,p) 11 T(P{ijy})

Gateway objects, 1JJx are defined by 1JJx .L = {ct>(x)}and by the follow­
ing behavior:

w,,[C]II4>(x)(act,u) +-t w,,[C 11 cf>(x)(act,u)] (57)

40

tvx[C 114>(x)(act,u)]II4>(x)(l) -t tvx[C 114>(x)(act,u)]11 u(l)
(58)

Let e[·] be a context from /'i, , and P be a DJoin-calculus process.
Context e[·] and process P are said to be compatible if e[·] takes the
form e[·] = wo(U, V)[lInEU ID"x[Nx] 11 . IlaijEUl Aail [... AaiPi 0 .. ·ll, with
<jJ(U) V, Ul U, Nx set of messages of the form <jJ(x)(act, u), u E V,
and if Pis such that FV(P) U.

We then have the following:

Proposition 2 Let P and Q be two DJoin-calculus processes such that
P -+join Q. Then, for any /'i, context e[·] such that e[·] and P are com­
patible, there is a /'i, context t[·], such that t[·] and Q are compatible and
e[Tp(p)] t[Tp(Q)].

Proof By induction on the form of derivation contexts in the DJoin­
calculus. <>

We can illustrate a proof step and the way the simulation works with
an instance of the GO rule of the Djoin-calculus:

d.b[D' : P']/\ e.a[D : Plgo(b); Q] -+ d.b[D' : p' /\ d.b.a[D : PIQ]

Let R = d.b[D' : P']/\ e.a[D : Plgo(b); Q] and S = d.b[D' : P']/\
d.b.a[D : PIQJ, and let e[·] = wo(U, V)['fJ 11 Ad[Ab Dl11 Ae[AaDl 11 .]. We
have the following derivations:

{[T(R)]
= wo(U, V)[1711 Ad[AbDll1 Ae[AaDl 11 loc(d.b, D', P') IIloc(e.a, D, Pli go(b)j Q)]
-t* wo(U, V)[1711 Ad[Ab[T(D') 11 T(P')]] 11 Ae[Aa[T(D) 11 T(P) 11 go(b,Q)]]]
-t wo(U, V)[1711 Ad[Ab[T(D') 11 T(P')llll Ae[4>(b) (go, Aa[T(D) 11 T(P) 11 T(Q)])ll
-t wo(U, V) [17 11 Ad[Ab[T(D') 11 T(P')llll4>(b)(go, Aa[T(D) 11 T(P)] 11 T(Q)) 11 AeDl
-t wo(U, V) [17 11 Ad[Ab[T(D') 11 T(P')] 11 4>(b)(go, Aa[T(D) 11 T(P) 11 T(Q)])] 11 AeDl
-t wo(U, V) [17 11 Ad[Ab[T(D') 11 T(P') 11 Aa[T(D) 11 T(P) 11 T(Q)]]] 11 AeDl
-t* wo(U, V)[1711 Ad[Ab[AaDl] 11 AeD Illoc(d.b,D',P') Illoc(d.b.a,D,P 11 Q)]
= ([T(S)]

4.3. DISCUSSION

The simulations presented above are very similar in their form: apart
from objects performing ancillary functions (global container objects
which are used essentially to implement name management in the simu­
lated pro ces calculus, and gateway objects which are used to implement
message exchange with non unique receivers required by the simulated
process calculus), the core of each simulation lies in the definition of a
particular type of container objects (objects and rules (28) to (35)
for ambients, objects Aa and rules (50) to (55) for DJoin localities).

Object-based model tor distributed computation 41

This suppports our claim that the essential difference between these dis­
tributed calculi lies in the behavior they implicitly attach to their specific
notion of domain and which is precisely characterized by the /'i, model
simulation. Additional evidence for this claim can be found in [18].

5. CONCLUSION

We have presented in this paper the /'i, model, a general model for
distributed and mobile computation, based on a not ion of domain.

The work undertaken here is far from complete, however. First, two
important requirements are currently not covered by our model : the
ability to define domains with overlapping contents, and the ability to
create new domains by combining existing ones (see [18] for a discussion).
To meet these requirements, one would require complementing the /'i,

model with general rules for the combination and the composition of
domains.

A second direction for furt her research resides in the definition of
an effective programming model based on the /'i, model. We are cur­
rently investigating the extension of the blue calculus introduced in [3]
with constructions based on domains. Armed with such a domain-based
process calculus, we would then be in a position to furt her develop the
theory of distributed domains, relying on standard process calculus tools
such as bisimulations and type systems.

A third line of investigation lies in the systematic comparison of mod­
els and calculi for distributed programming. Apart from the Mobile
Ambients calculus and the DJoin calculus, we have successfuHy sim­
ulated the 7rll-calculus [1], in the /'i, model (see [18]). We believe the
Seal-calculus, as defined in [22], the D7r-calculus, as defined in [8], or
the Safe Ambients calculus introduced in [11] can be simulated in much
the same way. Equipped with a fuH-fledge domain-based process cal­
culus, we could certainly get stronger results than those reported here,
e.g. along the lines of fuHy abstract simulations up to given execution
contexts.

The /'i, model, as defined in this paper, is certainly too powerful for
programming purposes. Studying how different distributed process cal­
culi can be simulated with it, can provide us with useful hints towards
the definition of a domain-based process calculus which can subsurne
them and accommodate them as sub-calculi.

References

[1] R. Amadio : "An asynchronous model of locality, failure, and process mobility"
- Research Report RR-3109, INRIA, Sophia-Antipolis, France, February 1997.

42

[2] G. Berry, G. Boudol : "The chemical abstract machine" - Theoretical Computer
Science, vol. 96, 1992.

[3] G. Boudol : "The 7r-Calculus in Direct Style" - Higher-Order and Symbolic
Computation, vol. 11, 1998.

[4] L. Cardelli, A. Gordon : "Mobile Ambients" - Foundations of Software Science
and Computational Structures, Maurice Nivat (Ed.), Lecture Notes in Computer
Science, Vol. 1378, Springer, 1998.

[5] C. Fournet, G. Gonthier: "The reflexive chemical abstract machine and the join­
calculus" - In proceedings 23rd ACM Symposium on Principles of Programming
Languages (POPL), January 1996.

[6] C. Fournet, G. Gonthier, J.J. Levy, L. Maranget, D. Remy: "A calculus ofmobile
agents" - in Proceedings CONCUR '96, LNCS 1119, Springer Verlag, 1996.

[7] C. Fournet, J.J. Levy, A. Schmitt: "A distributed implementation of ambients"
- INRIA Research Report, August 1999.

[8] M. Hennessy, J. Riely : "Resource access control in systems of mobile agents" -
Technical Report 2/98, School of Cognitive and Computer Sciences, University
of Sussex, UK.

[9] ITU-T Recommendation X.902 I ISO/IEC International Standard 10746-2:
"ODP Reference Model: Foundations" - November 1995.

[10] ITU-T Recommendation X.903 I ISO/IEC International Standard 10746-3:

[11]

"ODP Reference Model: Architecture" - November 1995.

F. Levi, D. Sangiorgi: "Controlling Interference in Ambients" - in Proceedings
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program­
ming Languages (POPL 2000), Boston, MA, USA, Jan. 2000.

[12] J. McAffer: "Meta-Level Architecture Support for Distributed Objects" - Pro­
ceedings of Reflection 96, G. Kiczales (ed), San Francisco, USA, April 1996.

[13] R. Milner : "Communicating and mobile systems: the 7r-calculus" - Cambridge
University Press, 1999.

[14] E. Najm, J.B. Stefani: "A formal semantics for the ODP computational model"
- Computer Networks and ISDN Systems 27, pp.1305-1329, 1995.

[15] E. Najm, J.B. Stefani: "Computational Models for Open Distributed Systems",
- 2nd IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS (97), Canterbury, UK, July 1997.

[16] Object Management Group: "The Common Object request Broker: Architecture
and Specification" - CORBA v2.0, July 1995.

[17] Object Management Group: "CORBA Components" - OMG document
orbos/99-02-0l, March 1999.

[18] J.B. Stefani, F. Germain: "Elements d'un" modele de traitement pour Marvel"
- RNRT project Marvel, Deliverable D2.0, January 2000.

[19] Sun Microsystems: "Java Remote Method Invocation Specification" - Technical
Report, Sun Microsystems, Mountain View CA, USA, May 1997.

[20] Sun Microsystems: "Enterprise Java Beans" - Specification vl.O, March ::'998.

[21] Sun Microsystems: "Jini Architecture Specification" - Specification vl.O, Jan­
uary 1999.

Object-based model tor distributed computation 43

[22] J. Vitek, G. Castagna : "Towards a calculus of secure mobile computations" -
Workshop on Internet Programming Languages, Chicago, Illinois, USA, 1998.

[23] T. Watanabe, A. Yonezawa : "Reßection in an object-oriented concurrent lan­
guage" - in Proceedings OOPSLA '88, San Diego, California, USA, 1988.

	ELEMENTS OF AN OBJECT-BASED MODEL FOR DISTRIBUTED AND MOBILE COMPUTATION*
	1. INTRODUCTION
	2. DOMAINS
	2.1. THE NOTION OF DOMAIN
	2.2. BEHAVIOR OF DOMAINS

	3. MODEL
	3.1. SORTS AND OPERATORS
	3.2. STRUCTURAL EQUIVALENCE
	3.3. OBJECT BEHAVIOR
	3.4. REDUCTION RELATION
	3.5. DISCUSSION

	4. SIMULATIONS
	4.1. SIMULATION OF MOBILE AMBIENTS
	4.2. SIMULATION OF THE DJOIN-CALCULUS
	4.3. DISCUSSION

	5. CONCLUSION
	References

