
ATOMIC FAlLURE IN WIDE-AREA COMPUTATION 

Dominic Duggan 
Department 0/ Computer Science 

Stevens Institute 0/ Technology 
Castle Point on the Hudson 

Hoboken, New Jersey 07030, USA. 

dduggan@cs.stevens-tech.edu 

Abstract The ATF Calculus is a kernel language for wide-area network programming 
languages, with atomic faHure semantics as its central organizing principle. 

Keywords: Wide-area network programming, fault tolerance, atomic faHure. 

1. INTRODUCTION 
Programming wide-area networks has emerged as an important area of re­

search, with the exploding commercial interest in WANs for electronic com­
merce. While programming local-area networks has been a focus of research 
for many years, the characteristics of WANs emphasize different issues and 
potentially require different solutions. One fundamental difference is that, for 
security reasons, WAN s are partitioned by firewalls into administrative domains. 
Any application that spans such administrative domains must somehow navi­
gate the firewalls that enforce the partitioning. This difference is so fundamental 
that it has been argued that it calls for a wholly new model of computation for 
programming WAN s [7]. Although firewalls are to some extent becoming obso­
lete because of encrypted trafik, this argument for partitioned network address 
spaces still applies in the emerging environment of virtual private networks. 

Several process algebras have been developed as the basis for new program­
ming languages for wide-area applications. At least two of these, the Ambient 
Calculus [8] and the Seal Calculus [10], are based on the idea that networks 
are partitioned into administrative domains and applications must navigate be­
tween these domains. These algebras have mobile computation as their orga­
nizing principle: to cope with the problems with communication in WANs, 
they allow processes to migrate across the network, allowing an application to 

http://dx.doi.org/10.1007/978-0-387-35520-7_21


66 

move to a host where it needs to perform some computation. A central facet in 
both of these calculi is their support for navigating firewalls, one of the central 
motivations for wide-area network programming languages [7]. 

This paper introduces the ATF Calculus, intended as a kernel language for 
wide-area programming languages. Although taking some of its cue from the 
aforementioned calculi, the ATF Calculus takes atomic failure as its main orga­
nizing principle. The motivation for this is that typical wide-area applications 
require some notion of coordination between geographically and administra­
tively distributed sites. The distribution of the sites raises the possibility of 
localized site failures and network partitions, and there should be some support 
for coping with such failures. In an application involving coordination between 
several sites, it should be possible to commit or abort a computation based on 
the pattern of failures of the sites involved in the computation. 

Transaction systems [19], and in particular nested transactions [21,24], have 
been developed for providing the capability for atomic failures in databases 
and distributed systems. The ATF Calculus does not completely follow the 
semantics of traditional transaction systems. In particular concurrency control 
is considered as an application issue, and the ATF Calculus only considers 
support for making failure atomic. This support is based on two ingredients: 

• Tracking of causal dependencies between computations. 

• An operation for atomic commitment of a collection of transactions. 

In Sect. 2 we give a description of the network model underlying the ATF 
Calculus. In Sect. 3 we give a description of the process calculus describing 
programs that execute within transactions. Both of these descriptions inc1ude 
type systems for well-formed networks and transactions. Sect. 4 gives an op­
erational semantics for the ca1culus. Sect. 5 gives a semantics for aborting 
and committing transactions. Sect. 6 considers an extension of the ca1culus 
with process mobility. Finally Sect. 7 considers related work and provides 
conc1usions. 

2. NETWORK MODEL 
Traditional process calculi such as CCS [22] and the 7t-calculus [23] do not 

distinguish between processes and the medium through which they communi­
cate; the medium is represented as just another process. The ambient calculus 
[8] does not distinguish between networks, hosts and process address spaces; 
all are represented as ambients. We find it useful to distinguish between places 
on the network (hosts and subnets) and processes, because of their different 
failure characteristics. In this seetion we describe our model of networks. In 
the next section we describe the processes that execute over these networks. 

Networks in the ATF Calculus are described as follows: 



Atomic Failure in Wide-Area Computation 67 

nEName .. - npl Place Name 

nch Channel Name 

npk Packet Name 

t Transaction Name 

NE Network .. - npl[L,N] Place 

t{P} Process 

(NI I N2) Wire 

(newn :NT)N NewName 

0 Empty Network 

LELog .. - E EmptyLog 

N LogEntry 

(Ll;Lz) Log Extension 

A place is an administrative domain or a host on the network. This contains a 
"soup" of processes, channels and subdomains N. npl is the name of the place, 
while L is a log of the actions performed at that place. For fault tolerance this 
log must be kept in stable storage. 

A channel is used for asynchronous communication between processes. As in 
the Ambient Calculus and the Seal Calculus, an communication is local within 
an administrative domain. To communicate with a remote host, there must be 
an application-Ievel protocol for delivering a message across the intervening 
domains. As with places, a channel has a name nch • The contents of a channel 
nch at a place npl is obtained by taking the union of the atoms representing 
messages sent to that channel at that place. Messages are a particular instance 
of transactional processes. 

A transactional process t{P} denotes a process P that executes as part of 
the transaction identified by the transaction identifier t. If that transaction is 
aborted, then all effects (messages sent and received) of that process must 
be undone. Transactional processes t{P} reflect the fact that all application­
level computations in the ATF Calculus take place within a transaction. The 
transaction name t identifies the transaction within which a process executes 
(t{ P}). Multiple threads may execute within a transaction; if one thread aborts 
in a transaction, then an effects of an threads in that transaction are undone. 
Thus transactions are the mechanism for defining the granularity of failures in 
the ATF Calculus. 



68 

2.1. NETWORK TYPE RULES FOR ATF 

The type mIes for the network are deseribed by the following type mIes, 
using judgements of the form r f- N oet where r is a eontext of named types 
(n: NT). 

r f- N oet r f- L log (npl : Place) Er 
r f- npl[L,N] oet 

r f- NI oet r f- N2 oet 

r f- (NI I N2) oet 

ru {(n: NT)} f- N oet 

r f- (new n: NT)N oet 

(t : Trans) Er r f- P: 0 
r f- t{P} oet 

r f- N oet 

r f- Nlog 

r f- LI log r f- ..l.z log 

r f- LI;..l.z log 

(NET PLACE) 

(NET WIRE) 

(NET NEW) 

(NET PROCESS) 

(LOG NET) 

(LOG EXTEND) 

There is a further side-eondition, that we do not explicitly enforee here for 
eeonomy: All transaetional processes for a particular transaetion t must exeeute 
at the same plaee. This is beeause various decisions regarding eommitting 
and aborting transaetions are made based on information in the logs, and so 
for sealability it must be possible to obtain this log information at a single 
loeal plaee. Note that it is not sufficient to say that there is a mapping from a 
transaetion identifier t to the name of the plaee npl on which all proeesses in that 
transaetion exeeute. This is insufficient beeause we do not require that every 
plaee has a unique name (for example, network address translation in VPNs 
would make this an unrealistic assumption). 

3. TRANSACTIONAL PROCESSES 

Proeesses in the ATF Calculus are deseribed by: 

PE Proeess send(M, V) Message Send 

receive(M, F, P) Message Reeeive 



Atomic Failure in Wide-Area Computation 69 

crypt{M, V, F) Packet Encrypt 

decrypt{M, V,F) Packet Decrypt 

F{V) Continue 

let (xn ) = V in P Elim Tuple 

lP Replication 

(PI I P2) Parallel Composition 

{newn :NT)P NewName 

commit Commit transaction 

abort Abort transaction 

0 Stopped Process 

FE Cont .. - {x: T)P Continuation 

The basic operations are for asynchronous message-passing [27]. In the ATF 
Calculus the essential use of mobility for navigating administrative domains is 
in the send and receive operations. For example the send operation takes two 
arguments: a capability M and a value V. The capability specifies a path to 
be taken in the network (identified by subcapabilities for leaving and entering 
administrative domains) and a capability for depositing the value in a channel 
at the final destination place. As with algebras such as the Ambient Calculus 
and the Spi Calculus [8, 1], access control is enforced by controlling the dis­
tribution of these capabilities, which are akin to private keys in cryptographic 
infrastructures. 

Our provision for "mobility" is consistent with approaches in active net­
works, such as the Switchware architecture [2], that restrict mobile threads to 
simplified packet languages (such as the PLAN language of the Switchware 
architecture [18]). The language of capabilities M can be considered as the 
analogue in the ATF Calculus of packet languages such as PLAN. This is in 
contrast with the Ambient Calculus and the Seal Calculus, which allow general 
user processes to migrate across the network. Active network architectures also 
allow heavyweight loading of application code modules to routers; this could 
be accomplished in the ATF Calculus by extending it to allow processes in 
messages. This is investigated in Sect. 6. 

The receive operation takes as its main argument a capability for reading from 
a channel. This operation also has two continuations: the success continuation 
Fand the failure continuation P, where the latter is activated if the receive 
operation times out. We assurne an asynchronous system, so timeouts provide 



70 

a form of unreliable failure detector which is the best that we can attain in an 
asynchronous system. 

Values in the ATF Ca1culus are described by: 

M, V E Value .. - npk[V] Packet 

(VI, ... , Vk) Tuple 

p Parameter 

inp Input Capability 

out p Output Capability 

MI·M2 Compose Caps 

Packets are an inessential aspect of the ATF Ca1culus, but provide crypto­
graphie primitives for authentieation and encryption of message contents as part 
of the language. Our motivation for inc1uding packets is that they are a funda­
mental tool for WAN programming, provided as primitives in the Spi-calculus 
[1] and defined in the ambient ca1culus [9]. The design of the ATF Ca1culus 
was infiuenced by the need to provide a corresponding facility. 

Creating a packet requires a capability for putting a value into a packet, while 
reading a packet requires the inverse capability. Capabilities therefore provide 
a function analogous to cryptographie keys; an application may publish only a 
key for creating packets, and then be the only process capable of reading packets 
created using the capability. Separating the capabilities for message creation 
and reading, from the capabilities for delivery and receipt of messages, allows 
an encrypted message to be forwarded by a process that does not have access 
to a key for reading the message contents. 

The form of capabilities are taken from the Ambient Ca1culus. In the Ambient 
Ca1culus, places, channels and packets are uniformly represented as ambients. 
However we find it easier to treat each of these concepts differently. For fault 
tolerance purposes, the behaviour of places, channels and packets are very 
different. A capability is a sequence of subcapabilities of the form in p or out p, 
where p is a place name, channel name or packet name, with the interpretation: 

in npl enter a place 

in nch write to a channel 

in npk create a packet 

Types in the ATF Calculus are described by: 

out npl leave a place 

out nch read a channel 

out npk read a packet 



Atomic Failure in Wide-Area Computation 71 

AT E Ambient Type Place Place Type 

Chan[T] Channel Type 

Packet[T] Packet Type 

NT E Name Type AT Ambient Type 

Trans Transaction Type 

TE Type NT Name Type 

(Tl, ... , Tk) Tuple Type 

Cap[AT] Capability Type 

X Type Variable 

pX.T Recursive Type 

Continuation Type T-+O Process Type 

Ambient types are the types of place names, channel names and packet names 
(the name reflects the original inspiration from the Ambient Calculus). Types 
also include process types and capability types, where the latter are indexed 
by ambient types. Types also include recursive types. In combination with 
tuple types, this supports a polyadic sorting discipline for data structures such 
as described for the n-ca1culus [23]. 

3.1. PROCESS TYPE RULES FOR ATF 
In this subsection we consider the type rules for transactional processes. 

r f- M : Cap[ Chan [T]] r f- V : T 

r f- send(M, V) : 0 
(PROC SEND) 

As already described, the send operation has two arguments, a capability and 
a value. The capability is to allow the process to deposit a message payload 
into a channel of the same type as the type of the payload. The send operation 
generates an "active message" that navigates the network to its destination. 

r f- M: Cap[Chan[T]] r f- F: T -+ 0 rf-p:o 
(PROC RECEIVE) r f- receive(M,F,P) : 0 

The receive operation requires a capability to read the contents of a message 
channel, where the message payload has the same type as the domain of the 
success continuation F. As with the typed ambient ca1culus [9], the type sys-



72 

tem does not distinguish between capabilities for sending to a channel and for 
receiving from a channel. 

r I- M : Cap[Packet[T]] r I- V : TrI- F : Packet[T] -* 0 
r I- crypt(Mnet , V, F) : 0 

(PROC ENCRYPT) 

r I- M : Cap[Packet[T]] r I- V : Packet[T] r I- F : T -* 0 
r I- decrypt(Mnet , V,F) : 0 

(PROC DECRYPT) 

The encryption operation takes a capability for creating a packet and a pay­
load, and passes to the continuation an encrypted packet containing the payload. 
Conversely the decryption operation takes a capability for destructing a packet, 
and an encrypted packet, and passes the contents of the packet to the contin­
uation. Again the type system does not distinguish between capabilities for 
creating and for destructing packets. 

The type rules for the remaining process constructs are fairly conventional: 

rl-F:T-*O rl-V:T 

rl- F(V): 0 (PROC CONTINUE) 

rl-v: (TI, ... ,n) rU {(Xl : Tt},,,,,(Xk: n)} I-P: 0 
(PROC LET) r I-Iet (Xl, ... ,Xk) = V in P : 0 

rl-p:o 
r HP: 0 

rU {(n: NT)} I- P: 0 
r I- (new n : NT)P : 0 

r I- PI : 0 r I- P2 : 0 
r I- (PI I P2) : 0 

rl-o:o 

rU{(x:T)}I-P:O 

r I- ((x: T)P) : T -* 0 

(PROC REPLICATE) 

(PROC NEw) 

(PROC PAR) 

(PROC NULL) 

(PROC CONT) 

The PROC CONT rule provides the type rule for a continuation, repre­
senting the remainder of a computation. As with almost all process algebras, 



Atomic Failure in Wide-Area Computation 73 

programs are written in continuation-passing style (a process algebra is basi­
cally an assembly language for concurrent programming). Continuations are 
second-class; they cannot be treated as values. 

The calculus is first-order, in the sense that only simple values can be ex­
changed between processes. The calculus could be made higher-order by mak­
ing continuations into first-class values, essentially adding Ä,-abstraction to the 
language. This is a straightforward modification to the operational semantics, 
but at some cost in complicating the metatheory of the calculus. We consider 
another approach to adding process mobility in Sect. 6. 

3.2. VALUE TYPE RULES FOR ATF 

In this subsection we provide the type rules for values, that are the content 
of message payloads exchanged between processes. 

(npk : Packet[T]) Er r I- V : T 

r I- npk[V] : Packet[T] 

rl- (VI, ... ,Vk): (TI, ... ,Tk) 

(p: T) E r 
rl-p:T 

(VAL PACKET) 

(VAL TUPLE) 

(VAL PARAM) 

The VAL PARAM rule is for both names (bound by the new construct) and 
variables (bound by abstraction ((x: T)P». A parameter can be a variable 
abstracting over a place, channel or packet name, as reflected in the rules for 
forming capabilities. 

rl- p :AT 

r I- in p : Cap[AT] 

rl- p :AT 

r I- out p : Cap[AT] 

r I- MI : Cap[Place] r I- M2 : Cap[AT] 

r I- MI.M2 : Cap[AT] 

(VAL INPUT CAP) 

(VAL OUTPUT CAP.) 

(VAL COMPOSE CAP) 

The VAL COMPOSE CAP rule types the composition of capabilities. As 
explanation for this type rule, useful capabilities have the following forms: 

in npk out npk , Create or destruct a packet 

Receive from local channel 

MI .. . Mn·in nch Deliver payload to channel at destination 



74 

where in the latter ease eaeh Mi has the form in nil or out nil for some n;l, 
i = 1, ... ,no 

4. OPERATIONAL SEMANTICS 
This seetion provides the operational semantics for the ATF Calculus. In 

Seet. 5 we eonsider the semantics of eommitting and aborting transaetions. 

4.1. LOCAL COMPUTATION RULES 
The loeal computation rules are fairly standard, and deseribe sequential eom­

putation within a process. The loeal eomputation rules are given by: 

!P -+ (!P I P) (RED REPLICATE) 

receive(out nCh,F,P) -+ P (RED TIME OUT) 

(RED CRYPT) 

decrypt(out npk,nPk[V],F) -+ F(V) (RED DECRYPT) 

(RED LET) 

((x: T)P)(V) -+ {V Ix}P (RED App) 

The timeout rule allows the reeeive operation to time out after some period 
of time. We do not explicitly represent time, sinee it does not eontribute any­
thing to the semantics. In a synehronous system it might be useful to have a 
representation of time in the semantics, although calculi that assume the fail­
stop model of failures only rely on an operation for deteeting whether a site 
has failed [25, 13]. As is well-known, wide-area networks eonstitute asyn­
ehronous distributed systems, where no upper bound ean be plaeed on message 
transmission delays or message proeessing times, and there may be unbounded 
real-time clock drift between different maehines [11]. Timeouts therefore eon­
stitute unreliable failure deteetors where a proeess makes the assumption after 
some period of time that a failure has oeeurred. The proeess must be prepared 
to eope with the possibility that this assumption is erroneous. 

4.2. STRUCTURAL RULES 
The structural rules for networks and proeesses follow the usual style of 

"ehemical" semantics for eoneurrent proeesses [6], and eonstitute the "heating" 



Atomic Failure in Wide-Area Computation 75 

mIes that allow processes and messages to be brought together for synchroniza­
tion. The structural mIes for processes include the internal reduction relation 
for processes. We omit the obvious structural congruence mIes. 

01 N-=N 

NI I N2 -= N2 I NI 

(NI I N2) I N3 -=NI I (N2 I N3) 

((new n:NT)NJ) I N2 -= (new n:NT)(NI I N2), n 

npl[L, {new n:NT)N] -= {new n:NT)nP1[L,N] 

{new nI :NT)(new n2:NT)N -= {new n2:NT)(new nI :NT)N, nI =I- n2 

(new n:NT)N -= N, n 

t{PI I P2} -= {t{PI} I t{P2}) 

t{(new n:NT)P} -= (new n:NT)t{P} 

E;L-=L 

L;E-=L 

LI; (Lz; Lg) -= (LI ;Lz); Lg 

°IP-=P 

PI I P2 -= P2 I PI 

(PI I P2) I P3 -= PI I (P2 I P3) 

{(new n:NT)Pt) I P2 -= (new n:NT)(PI I P2), n 

{new nI:NT)(new n2:NT)P -= (new n2:NT)(new nI:NT)P, nI =I- n2 

(new n:NT)P -= P, n 

E.M-=M 

M.E-=M 

(MI.M2).M3 -= MJ.{M2.M3) 

PI -+ P2 

PI -=P2 



76 

4.3. NETWORK AND LOG PREDICATES 

Several of the computation roles must examine the logs in order to check pre­
conditions for their successful execution. The predicates that they evaluate are 
given by the roles below. The predicates check if a transaction has successfully 
committed, if a transaction has aborted, if a transaction has received a particular 
message, and if a trans action depends causally on another transaction. Causal 
dependencies are introduced between transactions tl and t2 when t2 receives a 
message from tl. 

LFJ 
(LOG PREDICATE EXTEND) 

t { commit} F t committed (LOG PREDICATE COMMITTED) 

t{abort} F t aborted (LOG PREDICATE ABORTED) 

N recv == tl {receive(out nCh , F,P)} Nmesg == t2{send(in nCh , V)} 

(Nrecv I Nmesg) F tl received Nmesg 
(LoG PREDICATE RECVD) 

L F tl received Nmesg Nmesg == t2{send(in nCh , V)} 

L F t2"-+ tl 
(LOG PREDICATE DEPENDS) 

This last role determines if there is a causal dependency from a process in the 
transaction t2 to a process in the transaction tl. If there is such a dependency, 
then if the transaction t2 aborts, the transaction tl is also required to abort. We 
extend these log predicates L F J to to network predicates N F J: 

(NI I N2) FJ 

n rt./n(J) N F J 
(new n : NT)N F J 

LFJorNFJ 
npl[L,NJ F J 

(NET PREDICATE PAR) 

(NET PREDICATE NEW) 

(NET PREDICATE PLACE) 

4.4. NETWORK NAVIGATION RULES 

The semantics ofthe ATF Calculus is based on messages that navigate admin­
istrative domain boundaries and eventually "deposit themselves" in channels at 



Atomic Failure in Wide-Area Computation 77 

the destination place. This message can then only be read by a process execut­
ing the receive operation at that place, so message-passing is strictly local. All 
of this is similar to algebras for mobile computation such as the Ambient Cal­
culus and the Seal Calculus. The following rules allow a message to navigate 
in and out of administrative domains, with the crossing of firewalls mediated 
by capabilities associated with the message: 

N' == t{send(M, V)} 
----:-----..:...,--'--'--=----,-1 --,-- (RED IN PLACE) 
t{send(in npl.M, V)} I nPI[L,N] nP [L, (N IN)] 

N' == t{send(M, V)} 

npl[L,(t{send(outnp1.M,V)} I N)] (N' I npl[L,N]) 
(RED OUT PLACE) 

4.5. COMMUNICATION RULE 
The RED RECV rule allows allows a message to be retrieved from a channel 

by a receiving process. This is the synchronization point in the calculus. To 
a large extent it is the most important reduction rule in the calculus, since it 
establishes a causal relationship between the sending and receiving transaction. 
A log entry is written to stable storage, both to record a change in the state of the 
place, and also to record the causal dependency introduced by synchronization 
in the log: 

N recv == tl {receive(out nCh,F,P)} 

Nmesg == t2{send(in nCh , V)} N' == tl {F(V)} 
L V= tl aborted L V= t2 committed L' == L; (Nrecv I Nmesg) 

npl[L, (Nrecv I Nmesg I N)] (N' IN)] 
(RED RECV) 

The side-condition that L V= 12 committed reflects that a cornmitted process 
cannot receive any new messages, since it might introduce causal dependencies 
on uncommitted transactions that subsequently aborted. 

5. COMl\1IT AND ABORT 

In this section we consider the semantics of the commit and abort operations. 
The abort operation writes an entry on the log and rolls back the computation 
of the aborted process. "Roll back" in this respect simply entails restoring 



78 

messages that were received by this process. 

L t committed L t aborted 

{NI, ... ,NÜ = {N 1 L F t received N} 

N' == 1([(N 1 (NI 1···1 Nk))]t 

npl[L, (N 1 t{abort})] -+ npl[(L;t{abort} ),N'] 
(RED ABORT) 

The metafunction 1([N]t denotes the process of killing any processes in the 
transaction t: 

1([npl [L,N]]t = 

1([NI 1 N2]t 

1([(new n : NT)N]t 

1([t'{P}]t 

nPI[L,N] 

(1([NI]t 1 1([N2]t) 

(new n: NT)1([N]t 

{ t'{P} ift i= t' 
o otherwise 

For simplicity in this account, we do not roll back messages sent by an aborted 
process (once they have left the local site). Any process that receives such a 
message will be unable to commit. For local processes, the RED RECV rule 
ensures that such processes ignore messages sent by processes that execute 
within transactions locally to this place (such a message may return after wan­
dering around the network). However it is unclear how to achieve a scalable 
version of this for processes that may receive messages from an aborted remote 
transaction. 

It remains to give the semantics of the commit operation. The commitability 
predicate plays an important role in defining the preconditions for this operation. 
A transaction tl is allowed to commit if all transactions t2 that it depends on 
causally have committed, or are trying to commit. If the latter case tl does 
commit, then t2 must also commit. The complication with commitment is that 
a collection of transactions may be causally dependent on each other. We do not 
attempt to prevent causal cycles because there is no scalable way to enforce such 
a restriction. Instead several transactions that are in a causal cycle must commit 
simultaneously. The commitability predicate determines that a collection of 
transactions {tl, . .. , tk} are ready to commit. 

Definition 1 (Commitability) The (possibly mutually dependent) transactions 
tl, ... , tk can be committed in the network N, written 
N F {tl, ... , tk} commitable, if it can be justified by the following inference 
rules: 

NI F {tI, ... ,tü commitable N2 F {tl, ... ,tü commitable 

(NIl N2) F {tl, ... ,tü commitable 
(COMMIT WIRE) 



Atomic Failure in Wule-Area Computation 79 

NT =f: Trans N F {tl, ... ,tt} commitable 

(new n : NT)N F {tI, ... ,tk} commitable 
(COMMIT NEW) 

t {tl, ... ,tt} N F t committed or (N ti for i = 1, ... ,k) 
N F {tl, ... ,tk} commitable 

(new t : Trans)N F {tl, ... ,tt} commitable 
(COMMIT NEW TRANS) 

L ti aborted and L ti committed for i = 1, ... ,k 

N F {tl, ... ,tt} commitable (C ) 
OMMIT PLACE 

npl [L, Nl F {tl, ... ,tk} commitable 

t{P} F {tl, ... ,tt} commitable 

o F {tl, ... ,tk} commitable 

N' F {tl, . .. ,tt} commitable N' == N 

N F {tl, . .. ,tt} commitable 

Define network contexts and commit contexts by: 

(COMMIT PROC) 

(COMMIT NULL) 

(COMMIT CONG) 

[1 I npl[L,N[ II I (N I N[]) I (new n : NT)N[ 1 
N[Xtl 
npl[L, C[XI, ... ,Xmll 
(N I C[XI, ... ,Xm]) 

(new n : NT)C[XI, ... ,Xml 
(C[XI, ... ,Xkl I C[Xk+1, ..• ,Xm]) 

where, forcommitcontexts, in thelastcase0 ::; k::; m, andin thefirstcasem = 1. 
A commit context is used to describe the simultaneous atomic commitment of k 
transactions. Simultaneous commitment is necessary because of the possibility 
of causal cyc1es in the causal dependency graph. 

Definition 2 (Global Computation) The global computation relation NI ---t 

N2 relates networks NI and N2 according to the jollowing rules: 

NI ---t 
(RED CONG) 

NI ---t N2 

NI ---t N2 
(RED NET) 

N[NIl ---t N[N21 



80 

N[t{ Pd] ---+ N[t{ P2}] 
(RED PROC) 

N == C[NI, ... ,Nk] N 1= {tl, ... ,tt} commitable 

{
Ni == nfl[.4, (NI I ti{ commit})] }., . = 1 k 

11 _ pI. . I tor Z , •.. , 
Ni = ni [(.4,ti{ commzt} ),Nd 

(newtk: Trans)C[NI, ... ,Nk] ---+ (newtk: ... ,Nf] 
(RED COMMIT) 

We rely on a protocol such as the distributed two-phase commit protocol 
to actually implement the commit operation [19]. It is well-known that it is 
not possible to devise a non-blocking protocol for atomic commitment in an 
asynchronous system [16, 14]. 

Our intent is to describe and motivate the calculus, and so we eschew detailed 
discussion of its safety properties. The obvious safety property that we can 
check is type safety: 

Lemma 1 Let denote the reflexive transitive closure 0/ ---+ . lf r l­
N net and N N', then r I- N' net 

We can verify other safety properties of the calculus by giving a translation 
to a semantics where the effects of aborted transactions are undone. Messages 
originating in such transactions are removed from message channels, and the 
records of the effects of such transactions are erased from logs. This provides 
a verification of the calculus in the sense that any effect obtained from a "run" 
of the network, and remaining after transactions have aborted, could also be 
obtained from a run where no aborted transaction ran in the first place. This is the 
causal consistency property of the calculus: the commit and abort rules ensure 
that any effects remaining after undoing the effects of aborted transactions are 
obtainable from the executions of unaborted transactions. 

A more problematic question is what process equivalences can be defined. 
The complication is that the liveness properties of processes may be quite dif­
ferent unless one also considers uncommitted effects. However considering 
such effects introduces the possibilities of negative effects (undoing message 
sends due to aborts) and it is not clear how to obtain a fixed point. This remains 
an interesting topic for future work. 

6. ADDING MOBILITY: THE ATFM CALCULUS 
As noted in Sect. 3.1, the ATF Calculus is first -order, in the sense that pro­

ces ses cannot be transmitted as part of the message pay load. Allowing processes 
in messages is straightforward, but complicates the meta-theory. Calculi such 
as the 1t-calculus and the ambient calculus avoid higher-order processes by 



Atomic Failure in Wide-Area Computation 81 

passing "trigger channels" in messages (in the 1t-calculus) or moving a process 
through the network (in the ambient calculus). In this section we consider how 
a similar approach to passing processes in messages may be incorporated into 
the ATF calculus. We call this extension of the ATF Calculus the ATFM Cal­
culus. This extension introduces some redundancy, principally with respect to 
the encryption operations. The base calculus has the encryption operations of 
the Spi-calculus [1], while the extension considered here also uses the approach 
to encryption of the ambient calculus [8]. On the other hand, the encoding of 
process transmission here, motivated by adesire to keep values and processes 
separate, is not as natural as the other operations in the base calculus, so we 
treat process transmission as an extension of this base calculus. 

The main addition to the calculus is a message sending operation that in­
c1udes a process in the payload. There are two operations for accessing such a 
message: aforward operation for forwarding the message to another destina­
tion without accessing the message itself, and an open operation for "liberating" 
the process payload from the message. The latter operation is similar to the 
open primitive in the ambient calculus, but extended to avoid any race condition 
between dissolution and receipt of any communication from that process, and 
also extended to incorporate atomic failure semantics. The extensions to the 
syntax are: 

PE Process send(M,F) Message Proc Send 

forward(M,M', Pt, P2) Message Proc Forward 

open(M,M',Pl,P2) Message Proc Open 

T EType T--+O 

Although types inc1ude process types T --+ 0, processes are still second­
c1ass by a syntactic distinction: continuations F are not values V. Process 
types are used in typing the operations for forwarding and opening messages 
containing processes, although process values are not exchanged as part of these 
operations. 

The type mIes are best understood by first considering the reduction mIes 
for these operations. First, there are two reduction mIes that allow messages 
containing processes to navigate the network, similarly to the RED IN PLACE 

and RED OUT PLACE reduction mIes in Sect. 4.4. We omit these mIes for 
lack of space; they are reasonably obvious. 

The next reduction mle allows a message containing a process to be for­
warded to a new destination. This destination is identified by a path in and 
out of places, and an eventual channel into which the process should be de­
posited. The forwarding operation requires a capability for reading the channel 
into which the message has been deposited. It is assumed that the message is 



82 

encrypted, and the capability constructed by the forwarding operation ensures 
that the message arrives still encrypted at the new destination: 

N forw == tdforward(out nCh ,M,PI,P2)} 

Nmesg == t2 { send (in nch . in npk , F) } 

N'==tl{PI I send(M.innpk,F)} 

L tl aborted L t2 committed L' == L; (N forw I Nmesg) 

nP1[L, (N forw I Nmesg IN)] --+ np1[L' , (N' IN)] 
(RED FORWARD) 

Finally we have the rule for "dissolving" a message containing a process. The 
message is deposited in a channel, so the opening process must have a capability 
for reading that channel. The message is also assumed to be encrypted, so the 
opening process must have a capability for decrypting the message. We must 
also avoid any potential race condition caused by the fact that dissolving the 
message and communicating with the process so invoked do not constitute an 
atomic action. This is why the message is a continuation, abstracting over a 
capability for a communication channel. The opening process provides this 
capability as part of the opening operation, with the expectation that this is 
a private channel for initiating communication between the liberated process 
and the opening process. Finally the liberated process must execute within 
a trans action, so it executes in the trans action of the process that opened the 
message: 

Nopen == tl {open (out nch.out npk ,M,PI,P2)} 

Nmesg == t2{send(in nch.in npk,F)} 

N' == tl {F(M) I Pd 
L tl aborted L t2 committed L' == L; (Nopen I Nmesg) 

np1[L, (Nopen I Nmesg IN)] --+ np1[L' , (N' IN)] 
(RED OPEN) 

Note that this form of synchronization with a process, liberated from a mes­
sage payload, does not obviate the need for the value-passing communication 
channels that are already part of the ATF Ca1culus. These channels are still 
necessary for communication between the liberated process and the opening 
process. 

There are also timeout rules for the forward and open operations: 

forward(out nCh ,M,Pl,P2) P2 (RED FORWARD TIMEOUT) 



Atomic Failure in Wide-Area Computation 83 

With these reduction roles, we are in a position to provide the type roles for the 
operators. The process-containing message requires that the process in fact be a 
continuation, parameterized over a capability for a channel for receiving values 
of type T. The capability associated with the message terminates with a key 
for encrypting the message. The forwarding message requires a capability for 
accessing the channel into which the message has been deposited (in encrypted 
form), as weH as a capability for a channel to which the message is to be 
forwarded. Both of these capabilities have the same type, since the type system 
does not distinguish input and output capabilities. FinaHy the open operation 
requires a capability for accessing a channel and descrypting the message. The 
message payload should be a continuation parameterized over a capability for 
a private communication channel, to be supplied by the opening process. 

r I- M: Cap[Packet[Cap[Chan[T]] 0]] r I- F: Cap[Chan[T]] 0 
r I- send(M, F) : 0 

r I- M: Cap[Chan[Packet[Cap[Chan[T]] 0]]] 
r I- M' : Cap[Chan[Packet[Cap[Chan[T]] 0]]] 

r I- PI : 0 r I- P2 : 0 
r I-!orward(M,M',PI,P2) : 0 

r I- M: Cap[Packet[Cap[Chan[T]] 0]] 
r I- M' : Cap[Chan[T]] r I- PI : 0 r I- P2 : 0 

r I- open(M,M',PI,P2) : 0 

(PROC PSEND) 

(PROC FORWARD) 

(PROC OPEN) 

7. RELATED WORK AND CONCLUSIONS 
Numerous process algebras have been proposed as the foundations of pro­

gramming languages for wide-area applications. Most of this work is based on 
mobile computation and mobile code to deal with latency and firewaH prob­
lems [12, 8, 10, 26, 17]. Much of this work has focused on access control 
for mobile computation in networks, as weH as tracking the trustworthiness 
of hosts. Although some work has looked at failures [3, 13,25,4], this work 
has assumed a fail-stop model of failures that is unrealistic in asynchronous 
distributed systems. 

There is a superficial similarity between parts of the ATF-Calculus and the 
LF-Calculus ofRiely and Hennessy [25]. The latter work is an extension of CCS 
with locations and failures, and it is also a two-tier calculus where processes 
execute at specific locations. Operations inc1ude an operation for "kiHing" a 
location, inc1uding all processes executing at that location, and operations for 



84 

testing if a location is live. However these similarities are only superficial, since 
places play the röle of locations in our system and transactions are a construct 
for controlling the granularity of causal dependencies. There is no notion in the 
LF-Calculus of committing effects or of using logs to undo effects. The ATF 
Calculus was developed independently of the latter work. 

The Argus distributed programming language [20] incorporated atomic re­
mote procedure calls based on the use of nested transactions [21, 24]. The 
semantics of nested transactions generalize the original database semantics of 
transactions (for example, correctness is again based on serializability and re­
coverability [5]). An important difference between nested transactions and the 
model of transactions considered here is that we allow interference between 
transactions, whereas the serializability correctness criterion for nested trans­
actions requires that sibling transactions be isolated from each other. Since 
parent and child transactions share locks, a distinction is made between leaf 
transactions that access data objects and transactions that spawn other trans­
actions, so a parent transaction never interferes with a descendant transaction. 
The only causal dependency allowed is the dependency of a child transaction 
on the parent transaction that created it. We provide a more relaxed correct­
ness criterion, leaving the correctness of concurrency control to the application. 
Haines et al [15] describe a subroutine library in MI.. that enhances applications 
with transactional semantics, with the semantics of nested transactions. Their 
library provides undoability and persistence as orthogonal features, however 
they do not give a semantics for these features (while acknowledging that there 
is interaction between the features). 

It is straightforward to add an operation to the ATF Calculus for creating new 
transactions (with child transactions depending causally on parent transactions ). 
We intend to investigate this further, in the context of considerlng more flexible 
ways for creating and combining transactions. 

References 

[1] Martin Abadi and Andrew Gordon. A calculus for cryptographic pro­
tocols: The spi ca1culus. Information and Computation, 148(1): 1-70, 
January 1999. 

[2] D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj 
Kakkar, Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter, 
Scott M. Nettles, and Jonathan M. Smith. The Switchware active network 
architecture. IEEE Network Special Issue on Active and Controllable 
Networks, 12(3):29-36, 1998. 

[3] R.M. Amadio and S. Prasad. Localities and failures. In P. S. Thiagarajan, 
editor, Proceedings of 14th Conference on Foundations of Software Tech-



Atomic Failure in Wide-Area Computation 85 

nology anti Theoretical Computer Science, number 880 in Lecture Notes 
in Computer Science, pages 205-216. Springer-Verlag, 1995. 

[4] Roberto Amadio. An asynchronous model oflocality, failure, and process 
mobility. In Coordination '97, 1997. 

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control 
anti Recovery in Database Systems. Addison-Wesley, 1987. 

[6] G. Berry and G. Boudol. The chemical abstract machine. Theoretical 
Computer Science, 96(1):217-248, 1992. 

[7] Luca Cardelli. Abstractions for mobile computation. In Jan Vitek and 
Christian Jensen, editors, Secure Internet Programming: Security Issues 
for Distributed anti Mobile Objects, volume 1603 of Lecture Notes in 
Computer Science. Springer-Verlag, 1999. 

[8] Luca Cardelli and Andrew Gordon. Mobile ambients. In Maurice Ni­
vat, editor, Foundations of Software Science and Computational Struc­
tures, volume 1378 of Lecture Notes in Computer Science, pages 140-155. 
Springer-Verlag, 1998. 

[9] Luca Cardelli and Andrew Gordon. Types for mobile ambients. In Pro­
ceedings of ACM Symposium on Principles of Programming Languages, 
San Antonio, January 1999. ACM Press. 

[10] Guiseppe Castagna and Jan Vitek. A ca1culus of secure mobile computa­
tions. In Internet Programming Languages, Lecture Notes in Computer 
Science. Springer-Verlag, 1999. 

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed 
consensus with one faulty process. Journal of the ACM, 32(2):374-382, 
1985. 

[12] Cedric Foumet and Georges Gonthier. The reflexive chemical abstract ma­
chine and the join-calculus. In Proceedings ofthe 23rd ACM Symposium 
on Principles of Programming Languages, pages 372-385, St. Petersburg 
Beach, Florida, January 1996. ACM. 

[13] Cedric Foumet, Georges Gonthier, Jean-Jacques Uvy, Luc Maranget, and 
Didier Remy. A calculus of mobile agents. In 7th International Confer­
ence on Concurrency Theory (CONCUR'96), pages 406-421, Pisa, Italy, 
August 1996. Springer-Verlag. LNCS 1119. 

[14] V. Hadzilacos. On the relationship between the atomic commitment and 
consensus problems. In B. Simons and A. Z. Spector, editors, Fault­
Tolerant Distributed Computing, volume 448 of Lecture Notes in Com­
puter Science, pages 201-208. Springer-Verlag, 1990. 

[15] N. Haines, D. Kindred, J. G. Morrisett, and S. M. Nettles. Composing 
first-c1ass transactions. ACM Transactions on Programming Languages 
anti Systems, 16(6):1719-1736, November 1994. 



86 

[16] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a 
distributed environment. Journal oJthe ACM, 37(3):549-587, 1990. 

[17] Matthew Hennessy and J ames Riely. Type-safe execution of mobile agents 
in anonymous networks. In Secure Internet Programming: Security Issues 
Jor Distributed and Mobile Objects, Lecture Notes in Computer Science. 
Springer-Verlag, 1999. 

[18] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and 
Scott Nettles. PLAN: A packet language for active networks. In Pro­
ceedings oJ ACM International ConJerence on Functional Programming. 
ACM Press, September 1998. 

[19] Butler Lampson. Atomic transactions. In B. Lampson, M. Paul, and 
H. Siegert, editors, Distributed Systems-Architecture and Implementa­
tion, volume 205 of Lecture Notes in Computer Science, pages 246--285. 
Springer-Verlag, 1981. 

[20] Barbara Liskov. Distributed programming in Argus. Communications oJ 
the ACM, 31(3), March 1988. 

[21] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic 
Transactions. Morgan-Kaufman, 1994. 

[22] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989. 

[23] Robin Milner. The polyadic 1t-calculus: A tutorial. In Friedrich L. Bauer, 
Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra 
oJ Specification, volume 94 of Computer and Systems Sciences, pages 
203-246. Springer-Verlag, 1993. 

[24] J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed 
Computing. MIT Press, 1985. 

[25] J ames Riely and Matthew Hennessy. Distributed processes and location 
failures. In Proceedings oJ the International ConJerence on Automata, 
Languages and Programming, 1997. 

[26] James Riely and Matthew Hennessy. Trust and partial typing in open sys­
tems of mobile agents. In Proceedings oJ ACM Symposium on Principles 
oJ Programming Languages, 1999. 

[27] Davide Sangiorgi. Asynchronous process calculi: The first-order and 
higher-order paradigms. Theoretical Computer Science, 1999. 


	ATOMIC FAlLURE IN WIDE-AREA COMPUTATION
	1. INTRODUCTION
	2. NETWORK MODEL
	2.1. NETWORK TYPE RULES FOR ATF

	3. TRANSACTIONAL PROCESSES
	3.1. PROCESS TYPE RULES FOR ATF
	3.2. VALUE TYPE RULES FOR ATF

	4. OPERATIONAL SEMANTICS
	4.1. LOCAL COMPUTATION RULES
	4.2. STRUCTURAL RULES
	4.3. NETWORK AND LOG PREDICATES
	4.4. NETWORK NAVIGATION RULES
	4.5. COMMUNICATION RULE

	5. COMlIT AND ABORT

	6. ADDING MOBILITY: THE ATFM CALCULUS
	7. RELATED WORK AND CONCLUSIONS
	References




