
COMBINING AUTHENTICATION AND LIGHT-
WEIGHT PAYMENT FOR ACTIVE NETWORKS

Rudiger Weis
cryptolabs Amsterdam

convergence integrated media GmbH, Berlin, San Francisco, Amsterdam

ruedi@cryptolabs.org

Wolfgang Effelsberg
Praktische Informatik IV

University of Mannheim, 68131 Mannheim, Germany

effelsberg@pi4.informatik.uni-mannheim.de

Stefan Lucks*
Theoretische Informatik

University of Mannheim, 68131 Mannheim, Germany

lucks@th.informatik.uni-mannheim.de

Keywords: Active Networks, Payment, Authentification, Combined Schemes

Abstract Security functions are of critical importance for the acceptance of Ac-
tive Networks in practice: network nodes must be protected from ma-
licious code, and they should account for the cost of executing code;
this also helps to prevent denial-of-service attacks. For the payment
function code packets must carry some form of light-weight electronic
cash. Cryptographic schemes can be used to solve both the security and
the payment/resource management problem. In this paper we propose
to combine cryptographic algorithms in order to solve both problems in
an integrated way. Our scheme is secure, light-weight and efficient: It
saves space in the packet headers, and the security is higher than that
of separate algorithms for authentication and cost accounting.

*Supported by the Deutsche Forschungsgemeinschaft (DFG) grant KR 1521/3-1.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. R. van As (ed.), Telecommunication Network Intelligence

10.1007/978-0-387-35522-1_37

http://dx.doi.org/10.1007/978-0-387-35522-1_37

454

1. INTRODUCTION
Active Networks are considered to be especially useful for the rapid

development of new services in a network. It is a key characteristic of
Active Networks that packets carry not only data but also code. This
code is written to be executed on internal nodes of the network. The
internal nodes are thus expected to execute "foreign" code, i.e. code
originating at remote sites. They must have means to execute authorized
code only in order to prevent damage to local resources and to other
network users.

Another problem with Active Networks is the fact that the execution
of "foreign" code consumes local resources in the internal nodes. If there
is no accounting in the internal nodes one packet stream could waste con-
siderable processing power within the network; fairness between streams
could not be enforced. Also denial-of-service attacks could not be pre-
vented, i.e. an arriving packet could run into a code loop and block a
nodel .

We propose to use a micro-payment protocol, initially developed for
electronic commerce between humans, for this purpose. It turns out that
the same cryptographic building blocks can be used for code authentica-
tion and for micro-payment2 . We therefore propose to combine the two
functions for Active Networks.

Since there are many different models for Active Networks in the lit-
erature we define the model on which our work is based in Section 2.
In Section 3 we give a short overview of light-weight payment protocols.
Section 4 presents a scheme to combine code error detection with the
payment function. In Section 5 we introduce a slightly more complex
scheme that combines code authentication with payment. Section 6 for-
mally proves the security of our combined schemes. Section 7 discusses
some implementation aspects, and Sections 8 concludes the paper.

2. OUR ACTIVE NETWORK MODEL

There are two fundamental ways of combining code and data in Active
Networks:

• In the immediate one-time execution architecture each packet car-
ries its own code; the code is extracted in each internal network
node and executed locally. This architecture is very similar to
Mobile Agent systems.

• In the demand loading architecture the code is initially loaded into
an internal node when it is requested by a packet; it can remain

Combining Authentication and Payment for Active Networks 455

there and be executed many times, typically when processing the
subsequent packets of the same data stream.

In this paper we only consider the immediate one-time execution archi-
tecture where the code and data of each packet are self-contained. We
call such a packet an ANpacket.

New ANpackets are generated by client nodes. Each client node is
attached to a node of the active network, an internal node. The internal
nodes are interconnected by secure links. All internal nodes are trusted
nodes; our scheme does not provide protection of one internal node from
malicious other internal nodes.

The purpose of our scheme is to

• authenticate ANpackets in the internal nodes (i.e., verify the client
node they come from),

• provide a payment scheme by which the ANPackets pay for the
services of the internal nodes. This payment scheme also helps to
prevent denial-of-service attacks.

The ANpackets travel along an arbitrary path of internal nodes which
provide code execution services. In order to distribute cryptographic
keys and payment information efficiently we also assume that an efficient
and reliable broadcast mechanism exists within the internal network.
Our architectural model is illustrated in Figure l.

A real-world example corresponding to our model could be a Virtual
Private Network (VPN) where the internal network runs on trusted hosts
interconnected by secure links. Another example would be an Internet
Service Provider (ISP) where the inner network is a set of routers that
use ANpackets for signalling or resource reservat.ion purposes (but prob-
ably not. in t.he main data pat.h). It. is typically assumed that one IP
rout.er can t.rust anot.her IP router within the network of an ISP.

Without a payment function each ANpacket could execute as much
code as it wishes on an internal node. This can lead to very unfair
behaviour: a source node can inject a valid packet into the network that
uses up most of the processing power of an internal node. Also, denial-
of-service attacks are easy: a source node generates a packet with a code
loop, to be executed on an internal node, and that node will become
unavailable to other packets streams.

We therefore propose a resource management scheme based on micro-
payment. Each packet carries a chain of electronic coins. These coins
pay for local services on internal nodes. When the money is used up
the ANpacket is discarded by the internal node. The generation and

456

Active Network

Figure 1 Architectural Model of the Active Network

consumption of coins is done with an efficient, light-weight payment
protocol which we introduce in the next section.

3. A LIGHT-WEIGHT PAYMENT
PROTOCOL

In the last years several light- weight payment schemes have been de-
veloped. Most of them are based on cryptographic hash functions. The
main reason for this approach is the reduction of public key operations
to gain better performance. As Rivest and Shamir have pointed out hash
functions are roughly 1, 000 times faster than RSA signature verification
(with a small public exponent), and about 10,000 times faster than RSA
signature generation [RiSh96].

3.1. THE PAYWORD SCHEME

An especially interesting scheme is the Payword scheme. It is fast,
easy to implement and provides a high degree of security because of the
use of simple operations. It is a payment scheme based on chains of
hash values. It was developed by Ron Rivest and Adi Shamir [RiSh96].
Similar chains have been previously proposed by Lamport [Lamp81] and
Haller in S/Key [Hal194)' for access control (see also [OPIE]). The idea

Combining Authentication and Payment for Active Networks 457

for such micropayments has also been independently discovered by An-
derson et al. [AMS95] and Pedersen [Pede95].

With 1£ we denote a cryptographically strong hash function, such as
SHA-1 [FIPS180] or RIPE-MD160 [DBP96]. The important property of
1£ is its one-wayness and collision-resistance. Note that the "main secu-
rity" of the scheme is based on the non-invertibility of a cryptographic
hash function, a weak cryptographic assumption.

Generating Paywords. In the first step the user U has to establish
an account with the broker B. U creates a payword chain in reverse
order by picking the last chain link Wn at random, and then computing

Wi = 1i(Wi+l) for i = n - 1, ... ,1

We designate Wo as the root of the payword chain. The broker B signs
a digital certificate containing the broker's name, the user's name and
IP-address, the user's public key, the expiration date, the root Wo of the
payword chain, the length of the payword chain and other information.
This is illustrated in Figure 2.

• ••

Oneway

Figure 2 Hash chain

Performing a Payment. The i-th coin (for i = 1,2, ...) from U to a
vendor V consists of the pair (Wi, i). The vendor can verify the coin by
checking

So each payment requires no additional calculations by user U, and only
a single hash operation by payment receiver V.

458

3.2. THE PAYWORD SCHEME IN THE
ACTIVE NETWORK CONTEXT

The client is playing the role of the user U and the internal nodes
play the role of the vendors V. The network owner might be the coin
broker B. Before processing begins the payment root Wo is broadcast
to all internal nodes. The initial; distribution of "money" to the client
nodes is beyond the scope of this paper.

An additional feature of our approach is that we can use the payment
scheme for internal accounting in a very simple and natural manner. The
Payword scheme supports variable amount payments without increasing
the coin size. We can simply skip chain links to pay a higher amount,
in multiples of the coin value.

Suppose that each coin is worth one cent. If U is given W4 instead of
Wl, the payment has the value of 4 cents. Now the first internal node has
to perform four hash calculations to check the validity of the W4 coin.
He can "consume" one coin by using the "intermediate value" W3 as the
start of a new payment chain for the next internal node along the route
(see Figure 3).

Internal node

Internal node

Figur'f 3 Payword Scheme for Active Networks

Combining Authentication and Payment for Active Networks 459

4. COMBINING ERROR DETECTION AND
PAYMENT

We can check the integrity of an ANpacket by using a cryptographic
checksum. Let 1l be a collision-resistant hash function and coin a coin
of the payment scheme.

The payment scheme uses the boolean function ValidateCoin to check
the validity of a coin.

We define a function 1lC which combines both with a bitwise XOR

1lC(·) 1--+ 1l(.) EB coin.

Now we can compute a "hash&coin" check field by

HCfield:= 1lC(ANpacket).

This is illustrated in Figure 4. The client node concatenates the contents

Fignre 4 The Error Detection and Payment Scheme

of the packet with the HCfield

Send(ANpacketIIHCfield)

An internal network node can check the validity of a packet by the Check
function using the ValidateCoin function of the payment scheme. If we
use the Payword protocol this implies only one other hash computation:

Check(ANpacketllHC field) := ValidateCoin(HC fieldEB1l(ANpacket))

If there was a modification of the ANpacket in transit, or the coin is
invalid, the packet will be marked as "invalid" and discarded.

The possibility that two "false" values compensate each other can be
neglected if we choose sufficient lengths for the hash code and the coins.
We recommend to use b := 160 bit, which is the output-length of SHA-l
and RIPEMD-160.

460

Man-in-the-Middle Attack

Because of the fact that in our first scheme no secret information is
used to calculate the checksum, the scheme can only be secure against
a passive attacker. A passive attacker can read every protocol message,
but is not able to modify, generate or destroy messages.

An active attacker can intercept an HCfield and calculate the coin
by using the public hash function 11.:

HCfield (J) 1I.(ANpacket) = Coin

Now he can use the coin for his own packet. This motivates us to provide
a modified scheme for source authentification.

5. COMBINING AUTHENTICATION AND
PAYMENT

We can check the authenticity of an ANpacket by using a Message
Authentication Code (MAC) instead of a public hash function. This
provides security against an active attacker. Note that there must be a
secure channel for distributing the secret MAC key.

The Authentification and Payment Scheme is very similar to the
scheme of the previous section. Let MAC be the Message Authenti-
cation Code and coin a coin of the payment scheme.

We define a function AC which combines the MAC and the Coin with
a bitwise XOR

AC(·) := MACKO (J) Coin

We then calculate the "Authentication&Coin" AC field

ACfield:= AC(ANpacket).

The client node concatenates the contents of the packet with the AC
field

Send(AN packet I lAC field)

The scheme is illustrated in Figure 5. An internal node can check the va-
lidity of a packet by calculating the MAC and calling the ValidateCoin
function of the payment scheme:

Check(ACfield) := ValidateCoin(ACfield (J) MACK (ANpacket))

If there was a modification of the ANpacket in transit or the coin is
invalid, the packet will be marked as "invalid" and discarded.

The possibility that two "false" values compensate each other can
again be neglected if we choose a sufficient length for the MAC and the
coins. We recommend to use b := 160 bit.

Combining Authentication and Payment for Active Networks 461

ANpacket ACfield

Figure 5 The Combined Authentication and Payment Scheme

6. SECURITY ANALYSIS

Our fundamental idea is to combine two cryptographic outputs using
an algebraic group operation - such as the bit-wise XOR "$" - in order
to save space in the packet header. At a first look, the security of the
combined scheme appears questionable. Intuitively, one would expect
the combined scheme to be insecure if either of its components is inse-
cure. In this section we give evidence that this intuition is wrong, and
the combined scheme is secure if at least one of its components is secure.

In a formal model, we provide a proof of security for the combined
scheme. For the sake of space, we concentrate on the combination of
authentication and payment, as described in Section 5.

By "proof of security" we mean a formal proof that the combined
scheme can only be broken, if both the authentication and the payment
scheme can be broken. As a first step, we must define what it means if
a scheme "can be broken" .

Similar ideas to ours have been used in the context of cascading ciphers
[MaMa93] and in the design of the RIPEMD-160 hash function [DBP96].

6.1. DEFINITIONS

Our scheme combines an authentication value, a "Message Authenti-
cation Code" (MAC), and a payment value, a "coin". We first define the
security requirements for MACs and coins, then we define the security
requirement for our scheme.

Adaptive Chosen Message Attack

A MAC depends on a secret key: everyone knowing the secret key K
can compute the MAC

462

for the input x. On the other hand, it must be infeasible for any ad-
versary to forge a MAC, i.e., to compute m without knowing K. While
the key K is used by the legitimate users, the adversary may learn some
pairs

(Xl, MACK(xd), (X2' MACK(X2)), ... ,

and, in the worst case, may even be able to choose the values Xi. This
is a so-called Adaptive Chosen Message Attack. Being quite pessimistic,
we consider this type of attack to be possible. For example the adversary
might modify the traffic on the link from the client to the first internal
node.

In our formal model, we say that the adversary chooses Xi and learns
the value mi = MACK(Xi) from a "MAC-oracle". Then, the adversary
chooses xHI and learns mHI = MACK (xHd from the oracle.

q-forgery-secure MAC Scheme

A MAC is q-forgery-secure if after choosing q values Xl, ... , Xq and
learning the MACs

mb ... ,mq with mi:= MACK(Xi)

from the oracle, it is infeasible to forge a MAC, i.e:, to find a pair (xo, mol
with

mo = MACK(XO) and Xo ¢ {Xl, ... , Xq}

without asking the oracle a (q + 1)-st time.

Our payment scheme depends on sending coins cq , Cq-l, ..• to the
receiver. A payment scheme is secure, if the adversary cannot forge
coins, except when these are created by herself. In contrast to MACs,
there is nothing to choose for the adversary.

q-forgery-secure Payment Scheme

A payment scheme is q-forgery-secure if after having learned up to
q valid coins Cs , Cs-I, ... , Cs-q+b it is infeasible for the adversary to
produce another valid coin cs- q• For the sake of simplicity, we assume
the coin Ci-l to be uniquely defined by the coin Ci.

q-forgery-secure Combined Scheme

Similar to the above, we now define the security of our combined
scheme for authentication and payment. We allow the adversary to
choose a packet Pi, to learn the corresponding value ai from an "AC-
oracle", then to choose a packet PH I, to learn the corresponding value

Combining Authentication and Payment for Active Networks 463

ai+1 ... with

Here, cs , Cs-I, ... are our coins.
The scheme is q-forgery-secure, if after having chosen q values Xi and

learned q AC-values ai, it is infeasible for the adversary to find another
pair (Po, ao) with

on her own.

6.2. PROOF OF SECURITY

In this section, we give the proof advertised above.

Lemma 1: If the MAC is q-forgery-secure, then the composed scheme
is q-forgery-secure.

Sketch of proof. An outline of the proof is as follows: assume the exis-
tence of an algorithm A to break the composed scheme. We describe an
algorithm A * to forge MACs, using A as a "subroutine". The running
time for A * is the running time for A plus a moderate amount of extra
work. Essentially, A * computes the responses to A's q oracle queries:

1 A * creates q + 1 coins cq , ••. , Co.

2 A* runs A.

Every time A chooses Pi and asks the AC-oracle for ai = AC(Pi),
A* asks the MAC-oracle for mi = MACK(Pi) and responds with
ai = mi E9 Cq-i+1'

3 Finally, A produces an output (Po, ao) with Po fj. {PI, ... ,pq} and
ao = AC(po). Then A *'s output is mo = ao E9 Co.

The value mo is a successfully forged MAC, i.e., Po fj. {pI, ... ,pq} and
mo = MACK(PO)'
q.e.d.

Lemma 2: If the payment scheme is q-forgery-secure, then the com-
posed scheme is q-forgery-secure.

Sketch of proof. Similarly to the proof of Lemma 1, we assume the exis-
tence of an algorithm A to break the composed scheme and describe an
Algorithm A ** using A as a "subroutine" to break the Payment scheme:

1 A ** chooses a key K for the MAC scheme.

2 A** runs A.

464

Every time, A chooses Pi and asks the AC-oracle for ai = AC(Pi),
A** asks for the coin cq-i+1. computes mi = MACK(Pi) and re-
sponds with ai = mj EB Cq-i+1'

3 Finally, A produces an output (po,ao) with Po f/. {Pl. ... ,pq} and
ao = AC(po). Then A** computes mo = MACK(PO) and outputs
CO = ao EB mo·

The value CO is a successfully forged coin.
q.e.d.

Theorem: If either the MAC scheme or the payment scheme is q-
forgery-secure, then the composed scheme is q-forgery-secure.

Proof: This follows directly from Lemma 1 and Lemma 2. q.e.d.

In other words, our scheme is secure in the above sense if either of its
two components is secure, even if the other component is insecure.

6.3. REMARKS

In cryptography, one often requires MACs to be even stronger than
forgery secure: If the adversary produces q + 1 MAC inputs Xl. ... , xq ,

and Xo and learns the responses mj = MAC K(Xi) for i E {I, ... ,q} and
then learns another value mo which is either (a) mo = MACK(XO) or a
(b) random value mo, then the MAC scheme is q-distinguishing-secure if
it is infeasible for the adversary to distinguish between options (a) and
(b).

If a MAC is distinguishing-secure, there is no way for the adversary to
derive any useful information from the MAC. Similarly, we might define
the distinguishing-security of payment schemes and composed authenti-
cation/payment schemes.

In this paper, we concentrate on forgery security because we believe
that it meets most practical security demands for Active Networks. Note
that hash-chain based payment schemes, as suggested in this paper, ac-
tually are distinguishing-insecure: given the coin Cj, everyone can verify
Cj+l = l£(Cj) and hence check a coin's authenticity.

Based on the famous work of Maurer and Massey [MaMa93], one
can provide a formal framework similar to ours to prove the security
of our composed schemes: if either of the two components behaves like
a random function, then so does the composes scheme. But note that
being random is a much stronger requirement than just being forgery
secure. The formal treatment presented above depends on the much
weaker assumption of forgery security and hence indicates an improved

Combining Authentication and Payment for Active Networks 465

margin of safety, compared to a formal treatment based on requiring
pseudorandomness.

We stress that the proof of security is still applicable if "EB" is replaced
by any group operation, even a non-commutative one.

7. IMPLEMENTATION

In this section we discuss some implementation aspects. Based on the
security proof, we suggest to use different realisations of the MAC scheme
and the Payword scheme. First we discuss the HMAC construction.
Then we take a short look at hash functions not ba.'led on MD4. Finally
we suggest to use "salting" to improve the security of hash chains.

7.1. THE HMAC CONSTRUCTION

To save code and to be able to use standard cryptographic libraries,
we suggest to use a Message Authentification Code (MAC) based on the
same 1-£ as the payword chain. HMAC [BCK96] uses a cryptographic
hash function as a black box:

HMACK(X) = 1-£(K EB opadll1-£(K EB ipadllx))

with ipad := Ox36 repeated 64 times and opad := Ox5C repeated 64
times, K is generated by appending zeros to the end of K to create a
512 bit string.

This approach has several advantages. Cryptographic hash functions
have been well studied, and are usually faster than encryption algo-
rithms. In many countries, it is easier to export or import an authen-
tication tool, such as a signature system, than to export or import a
secure encrypting system.

Security of HMAC. In [BCK96] it was proven that HMAC provides
security against collision and forging attacks with only weak assumptions
on the underlying hash function.

This leaves an additional margin of security: even if some weakness
in the hash function 1-£ (e.g. MD5) is found, the MAC based on 1-£ may
still be secure. For example a collision of hash function means finding
a collision with a fixed Initial Vector (IV) and known output. If an
attacker wants to find a collisions in HMAC, she must find a collision
in the underlying hash function even when the IV is random and secret,
and the hash value is not explicitly known.

HMAC based on SHA-1 or RIPEMD- 160 provides a 160-bit output.
So even birthday attacks which need 280 operations seem to be infeasible.

466

7.2. HASH FUNCTIONS WITH DIFFERENT
DESIGN

It follows directly from the security proof in Section 6 that our scheme
is secure if one building block is secure. So it might be a good idea to
use building blocks based on different design. If a weakness is found in
one design, we still have a security reserve. An attacker will have to
break both. For example we can use RIPE-MD based HMAC and a hash
chain for payment based on Tiger.

Tiger. Tiger [AnBi96] is a new fast iterative Hashfunction designed
by Ross Anderson and Eli Biham. In contrast to MD5, RIPE-MD, SHA
and HAVAL it is not based on MD4. Tiger uses a big 8 x 64-S-Box to
gain a fast avalanche. Because of the extensive use of 64-bit operations
Tiger is as fast as SHA-l on 32-bit processors, and about three times
faster on modern 64-bit processors. The algorithm produces a 192 bit
output, which can be easily reduced to 160 or 128 bit by taking the first
160 respectively 128 bit from the 192 bit output.

7.3. SALTING HASH CHAINS

Salting is an inexpensive way to make dictionary attacks much more
difficult. Simply replace 11.(.) by

11.80 = 11.(811·),

where 8 is a "salt" (random value) which can be specified in the com-
mitment [RiSh96].

If we use a standard iterative hash function, the input (160 bit in our
case) is padded to a longer bit string (typically n . 512 bit). So we have
no relevant performance disadvantage.

8. CONCLUSION
In Active Networks the security of packets and of internal network

nodes is a vital necessity. Also, managing the active nodes' resources
in the presence of unpredictable incoming code packets is quite difficult.
Micropayment schemes help to manage node resources effectively and in
a fair manner.

In our schemes, the same header field is used for both authentication
and payment purposes. This saves space in the packet header. We have
presented a scheme which combined bit error detection with micropay-
ment and a scheme which combined authentication with micropayment.

We also gave a formal justification that our schemes are sound, i.e.,
secure if the underlying building blocks are secure. Our proof is very

Combining Authentication and Payment for Active Networks 467

strong: even if one of our two components is broken, the other one only
has to satisfy rather weak security requirements.

9. ACKNOWLEDGEMENTS

The authors want to thank the anonymous reviewers and Martin
Mauve for useful hints to improve the paper.

Notes
1. Several authors have proposed the use of light-weight accounting schemes to control

resource consumption; see for example [Tsch97].
2. Researchers at [IBM] have proposed a protocol family called KryptoKnight that is

also based on heavy use of hash functions in order to avoid dedicated encryption functions
for authentification and key distribution [BGH+92, MTVZ92, BGH+95].

References

[AnBi96] Anderson, R.,Biham, E., "Tiger: A Fast New Hash Func-
tion", Fast Software Encryption 3, LNCS 1039, 1996, pp.
89-98.

[AMS95] Anderson, R, Manifavas, H., Sutherland, C., "A practical
electronic cash system", 1995.

[BCK96] Bellare, M., Canetti, R, Krawczyk, H, "Keying hash func-
tions for message authentication", Advances in Cryptology
- Crypto 96 Proceedings, Springer, 1996.

[BETT98] Banchs, A., Effelsberg, W., Tschudin, C., Turau, V.: "Ac-
tive Multicasting of Multimedia Streams", Proc. IEEE Lo-
cal Computer Networks Conference LCN'98, Lowell, MA,
October 1998, pp. 150-159

[BGH+92] Bird, R, Gopal, I., Herzberg, A., Janson, P., Kutten,
S., Molva, R, Yung, M., "Systematic Design of a Fam-
ily of Two-Party Athentification Protocols", CRYPTO'91,
Springer LNCS, 1992, pp. 44-61.

[BGH+95] Bird, R, Gopal, I., Herzberg, A., Janson, P., Kutten, S.,
Molva, R, Yung, M., "The KryptoKnight family of light-
weight protocols for authentication and key distribution",
IEEE/ ACM Trans. Networking 3, 1, Feb. 1995, pp. 31 - 41.

[DBP96] Dobbertin, H., Bosselaers, A., Preneel, B., "RlPEMD-160,
a strengthened version of RlPEMD", Proc. Fast Software
Encryption (ed. D. Gollmann), LNCS 1039, Springer, 1996,
pp.71-82.

468

[FIPS180] NIST, "Secure Hash Standard", Washington D.C., April
1995.

[HaIl94] Haller, N., "The S/KEY One-Time Password System",
Proc. of the ISOC Symposium on Network and Distributed
System Security, San Diego, CA, February 1994.

[HSW95] Hauser, R., Steiner, M., Waidner, M., "Micro-Payments
based on iKP", December 17, 1995.

[IBM] IBM Applied Computer Science, KryptoKnight
http://www.zurich-ibm.com/Technology /Security /extern/kryptoknight/

[Lamp81] Lamport, 1., "Password Authentication with Insecure Com-
munication", Communications of the ACM 24(11), Novem-
ber 1981.

[MaMa93] Maurer, U., Massey, J., "Cascade ciphers: the importance
of being first" Journal of Cryptology. Vol. 6. Nr. 1., 1993,
pp 89-105.

[MTVZ92] Molva, R., Tsudik, G., Van Herrweghen, E., Zati, S., "Kryp-
toKnight Authentification and Key Distribution System",
Europeam Symposium on Research in Computer Security
(ESORICS'92), Toulouse, 1992.

[OPIE] One-time Password in everything, US Naval Research Lab-
oratory,
ftp://ftp.nrl.navy.mil/pub/security/opie

[Pede95] Pedersen, T., "Electronic payments of small amounts",
Technical Report DAIMI PB-495, Aarhus University, Com-
puter Science Department, August 1995.

[RiSh96] Rivest, R., Shamir, A., "Payword and Micromint", Security
Protocols, Springer LNCS 1189, 1997, pp. 1-18.
http://theory.lcs.mit.edu/-rivest/RivestShamir-mpay.ps

[Tsch97] Tschudin, C., "Funny Money Arbitrage for Mobile Code",
Dartmouth Workshop on Transportable Agents, Extended
Abstract, August 1997.
http://www.icsi.berkeley.edu;-tschudin/dart97.txt

[WGT98] Wetherall, D., Guttag, J., Tennenhouse, D., "ANTS: A
Toolkit for Building and Dynamically Developing Network
Protocols", Proc. OpenArch 98, San Francisco, April 1998,
pp 117-129.
http://www.tns.lcs.mit.edu/publications/openarch98.html

	COMBINING AUTHENTICATION AND LIGHTWEIGHTPAYMENT FOR ACTIVE NETWORKS
	1. INTRODUCTION
	2. OUR ACTIVE NETWORK MODEL
	3. A LIGHT-WEIGHT PAYMENTPROTOCOL
	3.1. THE PAYWORD SCHEME
	3.2. THE PAYWORD SCHEME IN THEACTIVE NETWORK CONTEXT

	4. COMBINING ERROR DETECTION ANDPAYMENT
	5. COMBINING AUTHENTICATION ANDPAYMENT
	6. SECURITY ANALYSIS
	6.1. DEFINITIONS
	6.2. PROOF OF SECURITY
	6.3. REMARKS

	7. IMPLEMENTATION
	7.1. THE HMAC CONSTRUCTION
	7.2. HASH FUNCTIONS WITH DIFFERENTDESIGN

	7.3. SALTING HASH CHAINS
	8. CONCLUSION
	9. ACKNOWLEDGEMENTS
	References

